

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

LEVEL

TN 15-80

DEFENSE COMMUNICATIONS ENGINEERING CENTER

TECHNICAL NOTE NO. 15-80

ON THE PLACEMENT AND SIZING
OF CONFERENCE DIRECTORS
IN THE CONUS AUTOVON

NOVEMBER 1980

407519

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

81 5 21 007

401 519

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER DCEC-TN-15-80 5. TYPE OF REPORT & PERIOD COVERED ON THE PLACEMENT AND SIZING OF CONFERENCE Technical Note DIRECTORS IN THE CONUS AUTOVON, S. PERFORMING ONG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(a) AUTHOR(A)~ M. J. Fischer G. W./Swinsky 9. PERFORMING ORGANIZATION NAME AND ADDRESS Defense Communications Engineering Center Systems Engineering Division, R700 1860 Wiehle Avenue, Reston, VA 22090 11. CONTROLLING OFFICE NAME AND ADDRESS Nove Same as 9 NUMBER O 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified N/A 15a. DECLASSIFICATION/DOWNGRADING N/A 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) N/A 18. SUPPLEMENTARY NOTES Review relevance 5 years from submission date. 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Conference Directors CONUS AUTOVON Network Optimization Queueing ABSTRACT (Continue on reverse able if recessary and identify by block number) In this technical note we report on the study that was conducted in answering the following questions:

How many Conference Directors should there be in CONUS AUTOVON and where

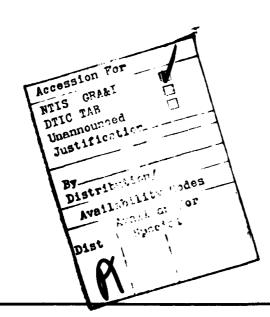
What is the required port sizing to meet the conference traffic

DD FORM 1473 EDITION OF PHOY SE IS OBSOLETE

should they be located?

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

407519


1: +_

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

 What is the impact of accommodating the conferencing traffic requirements on CONUS AUTOVON?

The analytic and computer methods used to answer these questions, as well as the study results, are discussed in the Technical Note.

4

UNCLASSIFIED

TECHNICAL NOTE NO. 15-80

ON THE PLACEMENT AND SIZING OF CONFERENCE DIRECTORS IN THE CONUS AUTOVON

NOVEMBER 1980

Prepared by:

- M. J. Fischer
- G. W. Swinsky

Approved for Publication:

C F LaVEAN

Chief, Systems Engineering Division

FOREWORD

The Defense Communications Engineering Center (DCEC) Technical Notes (TN's) are published to inform interested members of the defense community regarding technical activities of the Center, completed and in progress. They are intended to stimulate thinking and encourage information exchange; but they do not represent an approved position or policy of DCEC, and should not be used as authoritative guidance for related planning and/or future action.

Comments or technical inquiries concerning this document are welcome, and should be directed to:

Director Defense Communications Engineering Center 1860 Wiehle Avenue Reston, VA 22090

TABLE OF CONTENTS

		Page
	EXECUTIVE SUMMARY	vi
ı.	INTRODUCTION	1
II.	STUDY PROCEDURES AND METHODOLOGY	3
III.	SYSTEMS ANALYSIS	14
IV.	SIGNIFICANT FINDINGS AND CONCLUSIONS	29
	REFERENCES	30
APPE	NDIXES	
A	GENERATION OF SVIP CONUS CONFERENCING TRAFFIC REQUIREMENTS	A-1
В	CONFERENCE DIRECTOR PERFORMANCE AND SIZING MODEL	B-1

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	BASIC STUDY STRUCTURE	4
2	PROBABILITY DISTRIBUTION OF NUMBER OF CONFEREES IN A CONFERENCE	6
3	CONUS AUTOVON CD CONFIGURATION	8
4	ROUTING FOR A 10 CONFEREE CONFERENCE	11
5	SELECTION OF TWO CONUS/CANADA SWITCHING SITES FOR CD PLACEMENT	16
6	SELECTION OF TEN CONUS/CANADA SWITCHING SITES FOR CD PLACEMENT	17
7	IST MILEAGE FOR THREE GENERATIONS OF A 48 CONFERENCE REQUIRE- MENTS SET	18
8	IST MILEAGE VS. NUMBER OF CD'S (48 CONFERENCES)	20
9	TRANSACTION ACTIVITY FOR AN AVERAGE CD	22
10	PORT REQUEST ACTIVITY FOR AN AVERAGE CD	23
11	NUMBER OF CD'S UTILIZED BY A TYPICAL CONFERENCE	24
12	PORTS REQUESTED BY AN AVERAGE CONFERENCE	25
13	TOTAL NUMBER OF PORTS IN SYSTEM (P10 BLOCKING ON CD)	28
A -1	LISTING OF SVIP LOCATIONS	A-2
A-2	DISTRIBUTION OF NUMBER OF ORIGINATION CONFERENCES BY LOCATION	A-6
A-3	LISTING OF CONFERENCE REQUIREMENTS	A-9
B-1	CYCLIC BEHAVIOR OF LOSS PROBABILITIES	B-15
B- 2	SENSITIVITY TO VARIANCE OF OFFERED LOAD	B-16
в-3	BEHAVIOR OF SYSTEM WHEN Q ₁ =0	B-19
B-4	COVARIANCE OF REQUEST FOR PORTS	B-20
B-5	PROBABILITY DISTRIBUTION OF THE NUMBER OF CALLS IN SYSTEM	R-21

LIST OF TABLES

Table	<u>Tit le</u>	Page
I.	SELECTION OF CD LOCATIONS FOR VARIABLE NUMBER OF CD EQUIPMENTS	15
II.	COST OF AUTOVON TRUNKS TO SUPPORT THE ADDITIONAL CONFERENCING TRAFFIC	19
III.	DISTRIBUTION OF CD PORTS FOR VARIABLE NUMBER OF CD'S IN THE NETWORK (P.10 BLOCKING)	27

v

EXECUTIVE SUMMARY

In this technical note we report on the study that was conducted in answering the following questions:

- How many Conference Directors should there be in CONUS AUTOVON and where should they be located?
- What is the required port sizing to meet the conference traffic requirements?
- What is the impact of accommodating the conferencing traffic requirements on CONUS AUTOVON?

The analytic and computer methods used to answer these questions are discussed in the Technical Note. One general conclusion of our study is that the number and location of the Conference Directors is highly dependent on the traffic requirements. Another result is that the optimal number of Conference Directors for the traffic requirements used in our study is somewhere between 2 and 4 Conference Directors.

I. INTRODUCTION

In references [1] and [2] the Defense Communications Engineering Center (DCEC) was directed to study the effects on today's CONUS AUTOVON network brought about by overlaying a common user Secure Voice Conferencing capability (SVIP), which makes use of Conference Director (CD) processor controlled equipments placed at present AUTOVON switching sites. DCEC was directed to look at many issues of this problem, but four basic questions were posed to Branch R720 of the Systems Engineering Division. These questions are:

- 1. How many Conference Directors should there be in CONUS AUTOVON?
- 2. Where should they be located?
- 3. What is the port sizing required to meet the conference traffic requirements?
- 4. What is the impact of accommodating the conferencing traffic requirements on CONUS AUTOVON?

In this technical note we discuss the methods used and study results obtained in answering these questions.

In order to address these questions from an analytic and quantifiable approach several sets of data had to be obtained. The major one is a specification of the conferencing traffic requirements to be used in the study. By this we mean the point-to-point offered conference erlang loads, and the structural makeup of a particular conference. For each conference, one has to know the number and the locations of all conferees associated with the particular conference. Without such information no quantifiable study can be made. Furthermore, these conferencing traffic requirements are the biggest driver in the placement of a CD within CONUS. That is, one is not going to place a CD on the west coast of the United States if all the traffic requirements for a conference are on the east coast.

We were unable to find any such set of traffic requirements that was based on actual measured traffic, such as contained in the Traffic Data Collection System (TDCS) of AUTOVON. Therefore, we were forced to generate our own conference traffic. The method that was used to generate this traffic is presented in Appendix A. It was coordinated within DCEC for comments and was agreeable to all interested parties.

Another major piece of work that had to be accomplished dealt with answering question 3., CD port sizing. The normal method of sizing ports or trunks is to determine the offered load trying to use the ports, select the appropriate queueing model and interactively increase the number of ports until the desired measure of performance is met. The problem which arises in the context of conference directors is that no such queueing model exists. A conference call is similar to a two party call except that, rather than requiring one port, it can require two or more ports depending on the nature

of the particular conference. Thus, the standard Erlang Loss System [3] equations cannot be used. However, we have developed a queueing model (see Appendix B) that predicts the performance of conferences requesting use of the ports on the CD's.

These two problems posed the major developmental efforts in the study. The remaining portion of the study was accomplished by a simple straight-forward application of several of the Network Design and Analysis tools developed by R720 for other efforts within DCEC. Section II of this technical note discusses procedures and methodologies used in this study. The study results are given in section III along with the graphs and tables that were used to generate these results. Finally, section IV contains significant findings and conclusions.

II. STUDY PROCEDURES AND METHODOLOGY

The basic flow of the study is shown in Figure 1. From a given set of possible Conference Director (CD) locations and for a particular number of CD's (say k), the optimal k CD locations were found. The conference traffic subscribers were then homed and their traffic distributed within CONUS via the appropriate routing. For each CD, the traffic trying to use the ports was then collected and used to size the ports for the desired grade of service. Finally, the effect in terms of additional trunking cost to support the conference traffic in CONUS AUTOVON was computed. The value of k was increased and the procedure was continued. In the study, we varied k from 2 to 20 in increments of 2. This section describes what was basically done in each of these steps and the assumptions that were made.

Before any study of network behavior can begin, a detailed set of conferencing traffic requirements (point to point offered traffic) for the SVIP user community must be known. This set of requirements must be sufficiently detailed to indicate the geographic point to point (or in the case of conferencing, point to points) flows of conference voice traffic during a typical busy hour. The major assumptions used in generating these requirements were:

- The SVIP CONUS user community is located at sites already having access to the AUTOVON network and this existing access will be used in establishing the conferencing.
- The AUTOVON network in conjunction with processor controlled conference directors placed at switching sites will be responsible for the establishment of the connectivity required by a given conference.
- The set of conference requirements, indicating locations of originators and conferees for each conference, is an accurate representation of the steady state, day to day peacetime oriented demand for SVIP conferencing in CONUS during a typical busy hour.

No such set of detailed requirements exist which satisfies the above assumptions. In CONUS AUTOVON today, conferencing is conducted in a number of distinct ways. One example is that of a specilized command, such as NORAD, which implements conferencing specifically tailored to its own unique type of mission. Many of the conferences are prearranged and established, conditioned on the occurrence of an event rather than on a purely random basis. Another example is the 4-wire subscriber who is able to initiate random and prearranged conferences via two AUTOVON special assist operators at the Monrovia and San Luis Obispo switching centers, where traffic statistics of these conferences are generally not taken on a regular basis. A third example is that of a conference initiated by an authorized user who calls to a PBX and has a special attendant operator establish a conference by sequentially dialing in the conferees and manually connecting them to a bridge. In all of these examples, no complete and consistent set of requirements sufficient to perform network analyses exists.

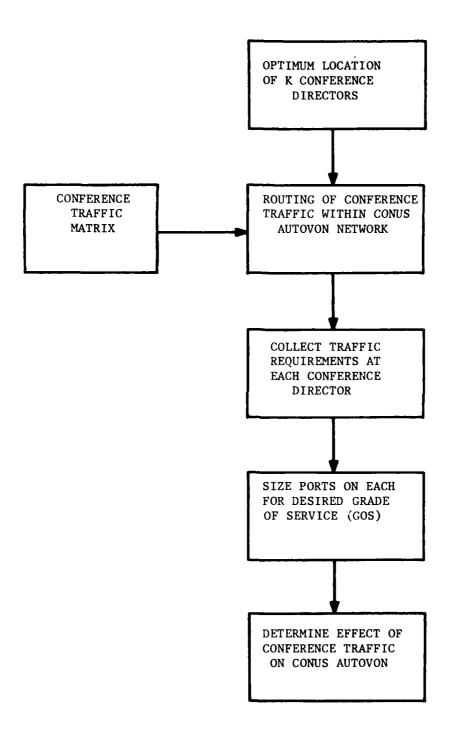


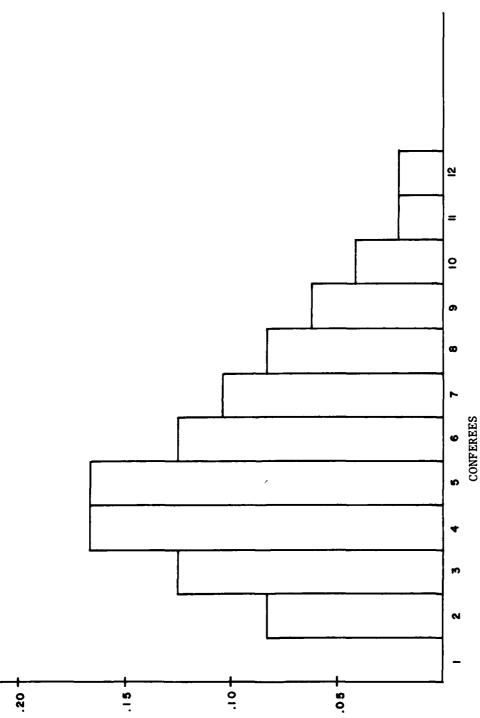
Figure 1. Basic Study Structure

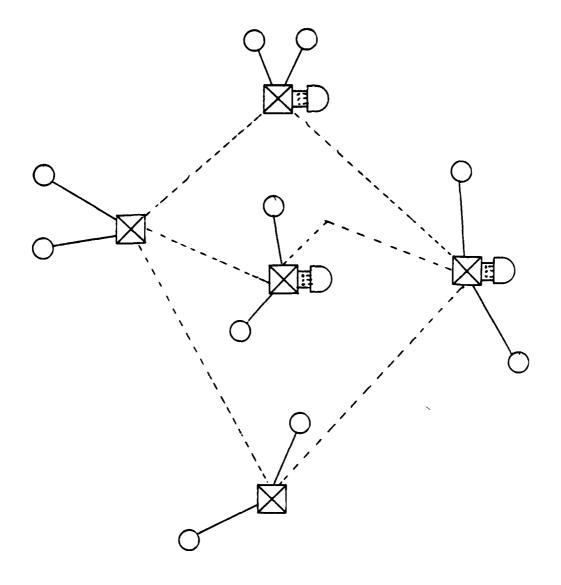
In order to examine network behavior during predicted common user SVIP conferencing in the CONUS, conferencing traffic was computer generated, using simulation techniques based on an existing data base of SVIP CONUS locations and the number of busy hour originating two party SVIP calls emanating from these locations. For a detailed discussion of the procedures used, see Appendix A. This procedure utilized the following major assumptions:

- The number of individual common user busy hour SVIP CONUS conferences originating from each of the 251 SVIP user locations in the above data base is proportional to the amount of two party SVIP traffic emanating from these locations.
- For each such conference, the number of conferees in the conference follows a preset distribution.
- The location of each user conferee was randomly chosen from locations in the data base, but with a probability proportional to the amount of SVIP two party erlang traffic; i.e., the locations generating higher amounts of two party SVIP traffic are more likely to be picked as conferee locations.

Two sets of traffic requirements were generated, a low traffic case of 48 conferences per busy hour and a high of 210. A set of 48 conferences, chosen as above, was generated using Monte Carlo sampling via a random number generator. So as not to bias the resulting analysis with a particular random number seed, two additional sets of conference requirements each with 48 conferences were also generated, using the same rules as above; all three sets of conference requirements were individually overlaid on the CONUS AUTOVON and subjected to the analyses which follow. Each set has the same number of originating conferences at the same locations, but the number and locations of the conferees of each conference varies according to the different samples from the underlying distributions used. In this manner, the sensitivity of the major results to the random sampling process can be examined. The baseline set of 48 conferences per busy hour was generated using a procedure which assumed that of the first 36 SVIP locations which generate the greatest amounts of SVIP two-party voice communications, the highest third of those would originate two busy hour conferences and the other two-thirds would generate one busy hour conference. The remaining 215 SVIP locations were assumed to originate no busy hour conferences. The assumed distribution of number of conferees in a given conference is shown in Figure 2. The theoretical mean of this distribution is 5.65 conferees per conference, and the mode of the distribution occurs at 4 to 5 conferees per conference. The actual number of conferees over the 48 conferences was 253, 297 and 282 for the three independent generations, which represents a sample average of 277.3 overall or about 5.78 per conference. These numbers are in close agreement with the theoretical expected value. For the 210 conferences per busy hour, the destination distribution of the conferees was the same as the 48 conference case.

In order to get a perspective on the comparative amounts of traffic involved, the following is illustrative of the quantities of interest. The total two-party originating erlang load offered to the network by the 251




Figure 2. Probability Distribution of Number of Conferees in a Conference

SVIP subscriber locations was approximately 545 busy hour erlangs. In comparison, the clear voice network offered load to the CONUS AUTOVON network is presently running 5157 erlangs, which represents a traffic load averaged over the two busy hours of the day (one in the morning, one in the afternoon) for the normally busy month of January 1980.

Throughout this study, an average holding time of 10 minutes was assumed for a typical conference. The amount of originating conference erlangs for the 48 conferences would then be 8 (= $48 \times 10/60$) erlangs, but this figure only represents the originations and does not take into account the number of conferees and their locations in the conference. Since we have 5.65 average conferees (not including originator) in a conference, a rough estimate of the offered load to the network is 8x5.65=45.2 erlangs (about 8.5% of the SVIP two party load). For the 210 case, we have 185.9 erlangs offered to the network, or 37.2% of the SVIP two party load. These figures roughly correspond to what would be expected had each originator placed independent calls to each of his conferees. In actuality, these calls are not placed independently but routed in the network via a minimum spanning tree between involved CD's. This routing is in turn dependent on both the specific network CD configuration under consideration and the source-destination characteristics of the particular conference. All of these factors will be considered in the following analyses, and actual switch-to-switch offered erlangs resulting from the actual flow of conferences in today's AUTOVON will be discussed. The study was conducted using the traffic matrix which resulted from the 48 conferences/busy hour and also from the 210 conferences/busy hour.

The first step in a particular run of the study was to fix the number of CD's, say k (the values of k that were considered were k=2,4,...,20); the next step was to determine the optimal location of k CD's from the candidate list of possible CD locations. We assumed that the list of possible CD locations considered the current CONUS AUTOVON switching sites. Furthermore, we assumed that if a CD was placed at one of these sites it was collocated with the site and would function as just another PBX subscriber to that switch, in terms of obtaining access through the network, either to another CD, or to a conferee in the conference. Access from the CD to its collocated switch is through ports connecting them. The number of such ports will be determined by the actual routing of the conference requirements and subsequent sizing analysis. This study considers CD equipments as common user in nature, and available to and from the AUTOVON network through the collocated switch. It does not consider private access from user locations, although this could be implemented as requirements warrant. Figure 3 illustrates the assumed architecture for this study. The user access lines to AUTOVON switches and the interswitch trunks are those in existence today (May 1980). A SVIP conference originator (user) would access first the switch to which he is homed and then, if no CD were present would be automatically routed to the closest switch which has a CD. The routing of conferences thereafter is discussed in detail later.

Switching locations and not subscriber's locations are chosen in this study as candidate sites for CD placement for a number of reasons. Primarily, the switching locations have already been selected to provide relatively short distance access to the greater number of subscribers. Further, the CD is



Figure 3. CONUS AUTOVON CD Configuration

considered as a common user equipment eligible for use, for example, by conference originators and conferees at diverse locations, and by other CD's in the routing of a conference. To place a common user CD at a subscriber location would place significant stress on the access line group at that subscriber, and would simultaneously create inefficient access by other nearby subscribers wishing to use the CD.

As discussed earlier, the issue of how many AUTOVON switching sites to select for CD placement is addressed in this study by treating this figure parametrically. That is, an optimum set of two best sites was chosen and the identity of the switches saved. This analysis was repeated, choosing the best 4 and again choosing the best 6 and so on up to 20 sites, resulting in 10 configurations of varying quantities of switching locations selected. All of the selections were chosen from the full set of 54 CONUS/CANADA AUTOVON switch locations with the goal of optimally reducing the user access to the CD's, as measured by traffic weighted mileage from a user location to the closest switch in the network having a CD, summed up over all user locations. Had firm conferencing traffic statistics been available, these would have been used as weights. However, as explained above, the conferencing traffic itself was generated from two party SVIP traffic originating from the SVIP user locations. As a result, these latter traffic figures were used as weights for the SVIP locations because of their role in determining conferencing traffic and because of their high correlation to the data base of 10,000 SVIP

We have a computer algorithm which was based on some work originally done at Bell Labs [4, 5]. This algorithm solves the optimal placement problem of the CD's. In general it solves the following problem. Suppose there are 'M' subscriber locations and 'N' candidate locations for CD's of which the optimal 'k' are to be determined. In this application M = 251, corresponding to the SVIP CONUS/CANADA subscriber locations. The value for N is 54, which is the number of CONUS/CANADA switch locations. The value for k was taken to range from 2 to 20 in multiples of 2. We briefly describe how the algorithm works in the following paragraphs. For more details see [4] and [5].

The algorithm is begun by constructing a penalty matrix $P = (p_{i,j})$, where $p_{i,j}$ is the penalty associated with homing subscriber i to a CD at switch j. Out of the N possible CD locations, k are chosen randomly as the initial best k locations. Each subscriber is homed to the nearest of these k locations, and the total penalty for all subscribers is computed using the matrix P. Then the algorithm proceeds by iterative optimal swapping of one location in the current set of best k locations with one location which is not so as to always keep k, the number of chosen locations, fixed. The procedure terminates when and only when the total penalty of the homing cannot be further reduced.

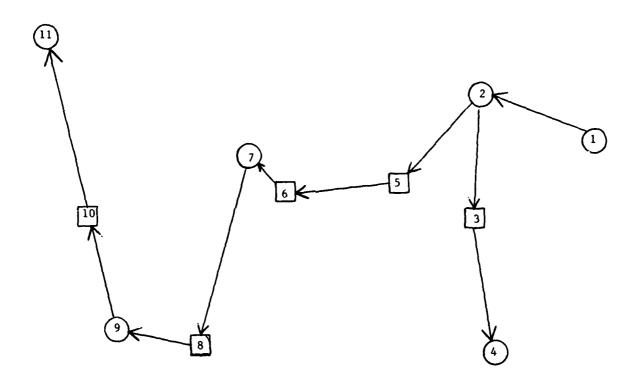
In our application, the penalty function used is a weighted mileage

where d_{ij} is the distance in miles from subscriber location i to the j^{th} AUTOVON switch site, and t_i is the amount of busy hour SVIP two party clear

voice traffic emanating from location i. The use of traffic as a weight allows for discrimination of the heavier users. The penalty function will tend to produce near optimal selection of candidate CD locations close to the traffic-weighted center of mass of the user locations, because every subscriber must be homed to its closest CD.

Once a specific set of conferences is known, and once a specific network configuration is specified (that is, the placement of a specific number of CD's at specific switch locations), then the process of routing the conference originator traffic to its conferees utilizing the resources of AUTOVON can begin. There are three major stages of this process. First, the originator must access his closest CD. This is assumed to be accomplished by the dialing of a special number which identifies to the subscriber's homed switch a request for the origination of a conference. In the case where a CD is not present at this switch, the call is routed, just as with any other AUTOVON call, to the closest switch which has a CD, and this CD becomes the originating CD for the conference.

Once the originating CD has been reached, the called numbers of the conferees are made available to it, either through signalling from the user or by table look-up at the CD (prearranged conference). At this point, there are a number of possible ways for the originating CD to establish connectivity with the conferees; for instance, he could place individual calls to each of them.


This CD to CD call routing may not be optimal; for example, consider an originator homed on Lodi, California and conferees homed on Littleton, Massachusetts, Mosely, Virginia and Polk City, Florida. Placing three calls utilizing long haul trunking facilities could be very expensive in terms of AUTOVON resources. A better solution would be to first tandem one call to an East Coast CD who would then proceed to make three shorter distance calls to the conferees. This would involve lesser use of Interswitch Trunk (IST) route mileage on the AUTOVON backbone, and usage of more CD's and a fewer number of ports per CD per typical conference. In addition, there would be a slightly higher number of calls placed in the backbone, but the route mileage of these calls would be lower overall. In general, there is a trade-off between the AUTOVON IST usage and the number of CD's and corresponding ports used in the system. A major assumption of this study is to favor implementation of the type of conference routing which will minimize impact upon AUTOVON resources (IST). To the greatest degree possible then, we routed traffic that made the most use of local tandem CD's wherever possible, to reduce AUTOVON IST route mileage. We determined this CD to CD routing by using a graph theoretic algorithm known as the minimum spanning tree. See [6] for a simplified discussion of this algorithm. The algorithm is a connection hierarchy or tree which connects all CD's involved in a single conference so as to guarantee minimal interconnecting route mileage. The branches in the tree connect CD's at AUTOVON switches, and this connection is effected by placing a call over the shortest path between the switches using the present AUTOVON IST connectivity. This is the second stage of the routing process.

The third and final stage in routing is the reverse of the first, i.e., connecting a tandem (or originating) CD to a conferee by placing an AUTOVON call. When the conferee is not homed to the tandem CD's switch, the call is

Switch Identity

- 1. Arlington, VA
- Toledo Junction, OH
- Williamstown, KY
- 4. Rockdale, GA
- 5. Hillsboro, MO
- 6. Lamar, CO

- 7. Cheyenne, Mountain, CO
- 8. Socorro, NM
- 9. Julian, CA
- 10. Topaz Lake, NV 11. North Bend, WA

LEGEND

- CD Utilized
- CD not present, or not utilized

Figure 4. Routing for a 10 Conferee Conference

routed through the backbone to the conferee's homed switch. Each individual conference in the traffic matrix is routed in this manner. Ports on a CD are seized in each of the following instances:

- o An incoming request (call from a conference originator)
- o An outgoing request (call to another CD)
- o A call to each conferee which has this CD as its local CD.

A detailed example of this routing is now described (see Figure 4). A user homed on the Arlington switch wishes to conduct a conference with 10 conferees homed on the following switches:

Switch	Number of Conferees		
Arlington, VA	3		
Toledo Junction, OH	2		
Cheyenne Mtn, CO	1		
Rockdale, GA	1		
Julian, CA	2		
North Bend, WA	1		

We assume each of the above switches has a CD collocated with it. The routing for this conference is as follows: The Arlington CD receives the originator's call, places a call to each of the three conferees homed to Arlington and relays a call to Toledo Junction, accounting for a request of five ports at the Arlington CD (one for the incoming call, one for each of the local conferees and one for the call to Toledo Junction). The Toledo Junction CD receives the call from Arlington, ties in its two local conferees and relays calls to Cheyenne Mountain (via Hillsboro, Missouri, and Lamar, Colorado, the direct path in the present AUTOVON connectivity) and to Rockdale, Georgia, (via Williamstown, Kentucky) for a total of five ports on the Toledo Junction CD. The Rockdale CD ties in the one local conferee for a total of two ports. The Cheyenne Mountain CD ties in its one local conferee and relays a call to Julian (via Socorro, NM) with three ports utilized at the Cheyenne Mountain CD. Julian ties in its two local conferees and relays on to North Bend (via Topaz Lake, NV) for a total of four ports utilized. Finally, North Bend ties in its local conferee for a total of two ports utilized.

A computer program was written to route all the conferees via this method and determine the accumulated requests for ports at each CD in the network. Note that the network topology, particularly CD placement and conference traffic matrix, is used to directly determine the arrival rate of conference calls as well as the probability distribution of the number of ports requested by a particular call. So the traffic characteristics at each CD of the network are different. The point should also be made here that we assumed that a conference was conducted even if not all the conferees could be connected, for whatever reason.

We now know the traffic loading on each CD in the network. The next step in this run is to determine the number of ports required to meet a desired

loss probability. We have discussed in the introduction, and it should be clearer now, that a particular call may request more than one port. In fact, the minimum request is for two ports. A queueing model was developed to predict the behavior of this system and is described in Appendix B, but several points need to made here.

First, a call requesting two ports sees a different blocking probability than one requesting three ports, for instance; the reason is simply seen when one considers the situation where there are only two free ports and a call arrives. If a call requires two ports it gets in; if it requires three it does not. Secondly, because of this fact one is forced to consider an overall average loss probability for all calls using the particular CD. All ports are sized for a PlO grade of service. The total number of ports in the network and various other statistics are accumulated.

The final step in this run is to determine the effect this particular n mber of CD's has on CONUS AUTOVON. There are two main quantities that are used to reflect this impact. The first is the IST mileage used by the particular set of conference requirements. This measure is the number of IST miles which are utilized in processing the set of conferences, using the minimum spanning tree routing discussed earlier. We note this measure is not the additional IST channel miles required to support the conference traffic, but just the AUTOVON IST mileage that would be traversed. This mileage is considered in two functionally separate categories: USER/CD and CD/CD IST mileage. The first category represents (1) the IST mileage from the originator's home VON switch to his local CD, and (2) the IST mileage to each conferee's home VON switch from his local CD. For purposes of this study, this category (2) does not include any AUTOVON access line (PBX to switch) mileage since emphasis here is on the AUTOVON backbone. The second category is the CD to CD IST mileage, which represents the branches of the minimum tree spanning all CD's involved in connecting a specific conference.

The second impact to be determined is the additional AUTOVON trunking that would be required to maintain a desired grade of service within AUTOVON. This is accomplished by constructing a switch-to-switch traffic matrix, in erlangs, which accurately represents e conferencing requirements during a busy hour, on a call by call basis. It is also possible to add, or overlay, this conference traffic matrix onto the existing clear voice traffic matrix and to conduct a fixed-performance cost comparison of the AUTOVON network, both with and without the subject conferencing requirements. Using the DCEC Switched Network Design and Performance Model [7], one can determine this impact.

In the performace mode of this model, the identity of the 54 CONUS/CANADA AUTOVON switches and traffic flow between them is provided, along with the present design connectivity of the network. An average network point-to-point grade of service requirement of P10 is held fixed and the links are resized to meet this grade of service. The cost of the network before and after the inclusion of conference requirements is determined.

III. SYSTEMS ANALYSIS

In the first two sections of this technical note we have described the problems to be addressed and the techniques we have used to get answers to some basic questions. This section presents some numerical results of the study. Several tables and figures are used to display our results.

Table I shows the results of placing a variable number of CD's in the CONUS AUTOVON network, and Figures 5 and 6 show graphically the configurations in Table I corresponding to 2 and 10 CD's respectively. In Table I, each column represents a separate and independent run of the procedure described earlier. That is, there is no influence of one run upon another; the selection of a switch for one configuration, say four CD's, has no effect on its selection in another configuration. The selection, as mentioned earlier, is solely influenced by effort to minimize the total traffic weighted distances from 251 SVIP locations to the best selection of switches. Figures 5 and 6 show straight line segments having as one terminal point the SVIP location and as the other terminal point the associated CD location. Homing is done on the basis of closest CD. Not all 251 locations are visible in the resolution of these two figures.

As was suggested in section II, one measure of impact on CONUS AUTOVON is the Interswitch Trunk (IST) mileage. This measure is the AUTOVON trunk mileage traversed by a particular set of conferencing requirements. There are two components of this measure of special interest: first, the USER/CD mileage, the mileage of each call to the closest CD; and the second is the CD/CD, the CD to CD mileage for each call. In general, as the number of CD's increases, the user/CD mileage ratio for the set of 48 CD's decreases due to the shorter distances and greater proximity of users to their local CD's. Whereas, the CD/CD mileage for the same set of requirements will increase with more CD's in the system because as more CD's become available for use they will be utilized by the routing discipline. This phenomenon will occur only up to a certain point where additional CD's added to the system will not be as fully utilized by the conferences due to an upper limit on the number of conferees in a conference. Hence, a leveling off point is reached. The total IST mileage is thus the sum of two opposing monotonic functions of the number of CD's in the system. The relative change in one component will work against the other component and the sum will depend upon which relative change is larger.

Figure 7 shows the results of each component of IST miles as a function of the number of CD's present in the system for the three sets of 48 conferences. The three sets were generated using different random number seeds. As a result, both the number of conferees for a given conference and the distribution over the 251 locations of the conferees of a given conference were varied to examine the effects upon IST mileage used. The results of Figure 7 indicate that the effect of varying the simulation sampling for

TABLE I. SELECTION OF CD LOCATIONS FOR VARIABLE NUMBER OF CD EQUIPMENTS

AUTOVON SWITCH						of C Netw				
	2	4	6	8	10	12	14	16	18	20
Apache Junction								X	Х	Х
Arlington		X	X	X	X	X	X	X	X	X
Brewton						X	X	X	X	X
Cedar Brook							X	X	X	X
Cheyenne Mountain				X	X	X	X	X	X	X
Delta										X
Dranesville	X									
Fairview						X			X	X
Hillsboro			X		X	X	X	X	X	X
Julian				X	X	X	X			
Littleton					X	X	X	X	X	X
Lodi				X	X	X	X	X	X	X
Mojave		X	X					X	X	X
Moseley								X	X	X
Mounds		X					X	X	X	X
North Bend			X	X	X	X	X	X	X	X
Polk City									X	X
Rockdale		X	X	X	X	X	X	X	X	X
Seguin				X	X	X	X	X	X	X
Socorro	X									
Stanfield										X
Sweetwater			X							
Terre Haute				X	X					
Toledo Junction						X	X	X	X	X
Wheat land							X	X	X	X

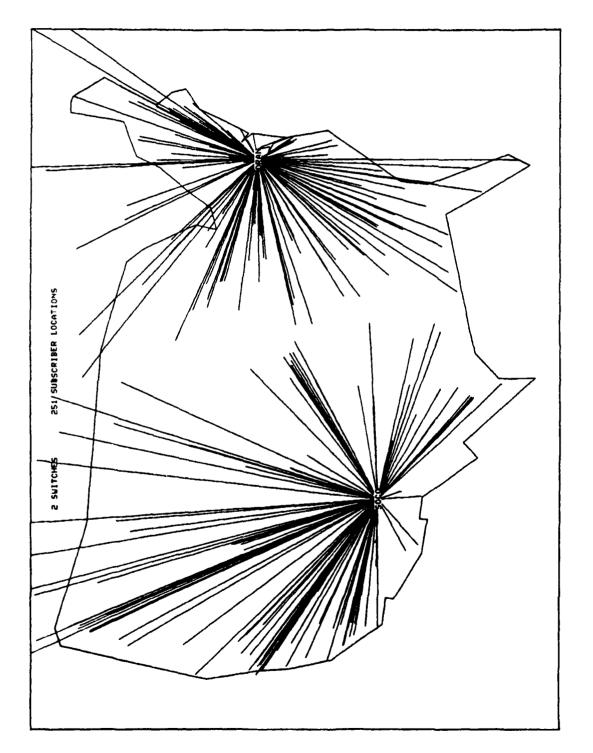


Figure 5. Selection of Two CONUS/Canada Switching Sites for CD Placement

Figure 6. Selection of Ten CONUS/Canada Switching Sites for CD Placement

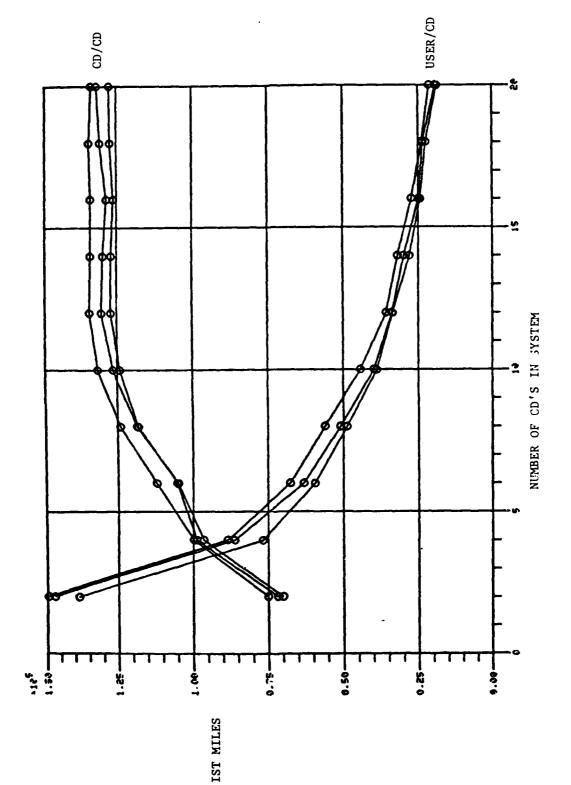


Figure 7. IST Mileage for Three Generations of a 48 Conference Requirements Set

number of conferees and location of conferees for a fixed set of originators is quite small. Since there was little difference in the three runs, in the remainder of the study the various figures of merit will be shown as averaged over the three separate sets of requirements. Also shown in Figure 7 is the leveling off of the CD/CD mileage at about 12 CD's, while the user/CD IST mileage is still decreasing at 20 CD's. Figure 8 shows the two types of IST mileage averaged and then summed as a function of number of CD's in the system. There is an initial drop in total mileage in going from two to four to six CD's, and from this point onward there is an overall trend of very slight decline in mileage. The initial sudden drop is due to the great effect of gaining access in the network to the local CD's of the users. This effect continues to dominate the increase in CD to CD mileage, but the combined effect after about six CD's is one of a diminishing effect on the mileage dropoff. Based solely upon this figure of merit, an optimally chosen set of six CD's would appear to have greatest impact upon use of IST mileage.

IST mileage, however, is not the only variable to be taken under consideration. In general the conferencing erlangs will be combined with clear and secure voice two party erlang traffic, and considerations of routing and economies of scale in trunk group sizing need to be examined. This is done in Table II for the 48 and 210 conferences per busy hour cases. For each case the additional cost of increasing the AUTOVON trunks to support the additional conference traffic and maintain a network grade-of-service of P10 is presented. The baseline case is when the number of CD's is zero.

TABLE II. COST OF AUTOVON TRUNKS TO SUPPORT THE ADDITIONAL CONFERENCING TRAFFIC

	48 Con	ferences	210 Conferences			
Number of CD's	CD Traffic (erlangs)	Cost	CD Traffic	Cost (M\$/mo.)		
0	0.0	6.310	0.0	ნ.310		
2	60.22	6.353	262.44	6.500		
4	60.89	6.346	268.83	6.469		
6	60.78	6.343	274.16	6.470		

Table II indicates a differential cost increase of 43, 36, and 33 K\$/month for a network carrying 48 conferences with two, four and six CD's respectively. There is a slight cost savings (7 K\$/mo) in going from two to four CD's and insignificant savings in going to six from four. From the network (and only the network) point of view, the selection of number of CD's is practically insensitive to cost considerations. The major cost considerations will more likely be found to lie within the CD system cost itself. Cost analysis for the CD equipments will be treated in subsequent reports. Increasing the number of conferences to 210 (a 4.4 fold increase), results in a differential cost increase of 190, 159, and 160 K\$/month for the two, four, and six CD configurations. These bear an almost exact ratio to the 4.4 fold increase in traffic. In particular, the same conclusions apply to the number of CD's in the network. An initial configuration of two CD's will

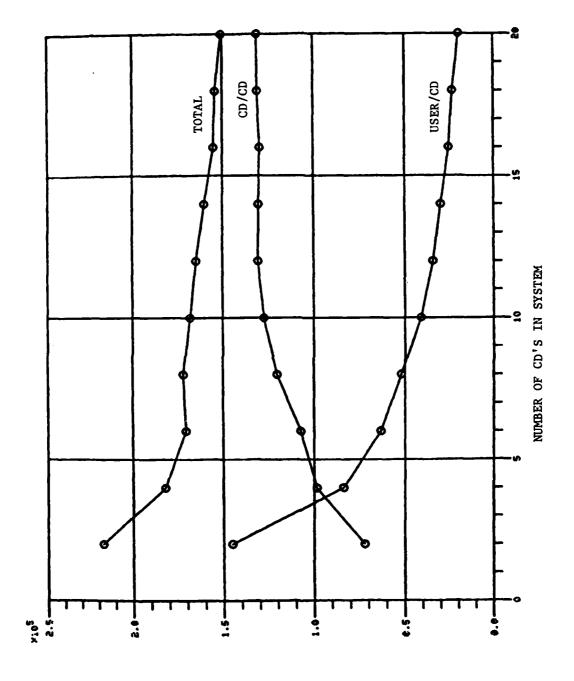


Figure 8. IST Mileage Vs. Number of CD's (48 Conferences)

IST MILES be slightly more expensive to AUTOVON than four, and in each case this cost will vary in a direct linear manner with numbers of conferences (i.e., volume of requirements).

A CD collocated with an AUTOVON switch will see both incoming and outgoing transactions regarding requests for its ports. First, on the incoming side, a single port will be seized from either a call from a conference originator (user) on the local CD or from another CD that is relaying the conference because it has conferees local to it. Then, on the outgoing side, groups of ports will be seized for calls to (1) each conferee involved in the conference, and (2) CD's involved in further tandeming of the conference. For a given conference, a specific CD may see no such transactions at all, even though its associated switch may be involved in the conference. Thus, a CD for one specific conference will see either no requests at all for ports or a request for two, three, or more ports, depending on its proximity to the users in the conference and the presence of other CD's in the network.

Figure 9 shows the number of conferences (a single request by a conference) being offered to a typical CD in the network versus the number of CD's in the network. Note that a request could result in any number of requested ports, but here only individual requests are counted. If the number of CD's in the network were one, the number of transactions would be 48, the number of conferences in the requirements data base. This shows how the conference requests on a CD drops as there are more CD's in the network. An average CD will, up to a point, see fewer and fewer conferences requesting service from it. Figure 10 shows the total number of ports being requested by an average CD. Both Figures 9 and 10 show that as more and more CD's are added to the system, with the requirements held fixed there will be less and less activity present at an average CD up to a point of diminishing returns due to geographical separation from the requirements flows. This emphasizes the need for accurate knowledge of conference flow patterns.

Figure 11 shows the average number of CD's that will be utilized by a typical conference. When only two CD's are present in the system, nearly all (1.9 on the average) will be utilized by an average conference. This ratio falls off rapidly, however, when more and more CD's are added to the network. For example, with 20 CD's in the network, only about 5.4 CD's (on the average) are utilized by a given conference. This is directly related to and controlled by the distribution of the number of conferees in a conference.

Figure 12 shows the number of ports requested by an average conference as more and more CD's become available in the network. Up to a certain point, more and more ports are being requested. This is due to the fact that more and more CD's are being involved in a conference because of their geographic availability. With more CD's available, the number of overall ports requested increases. This effect diminishes due to a saturation effect; i.e., additional CD's will tend not to be involved in a given conference. The conclusion is that from the conference point of view, the inclusion of more and more CD's in a network will have diminishing effect due to the upper limit on numbers of conferees in a conference. These figures have demonstrated that the optimal number of CD's in the CONUS AUTOVON is probably small and on the order of two to six CD's, depending on the location of the users.

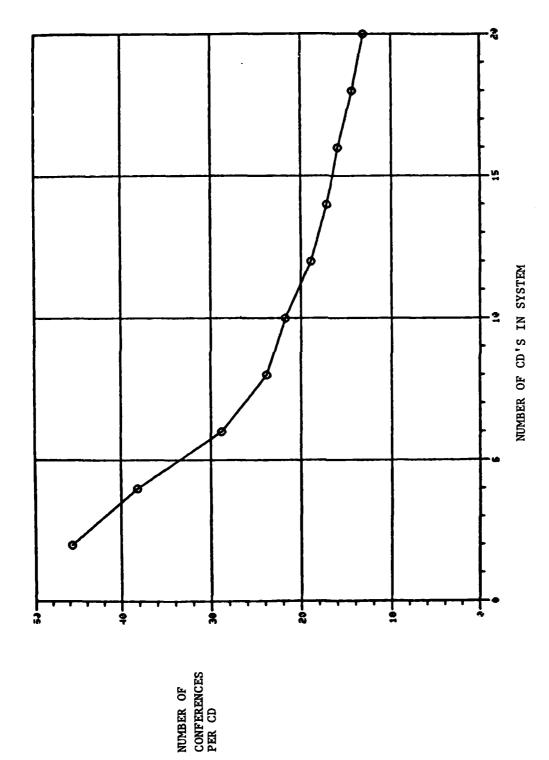


Figure 9. Conference Activity for an Average CD

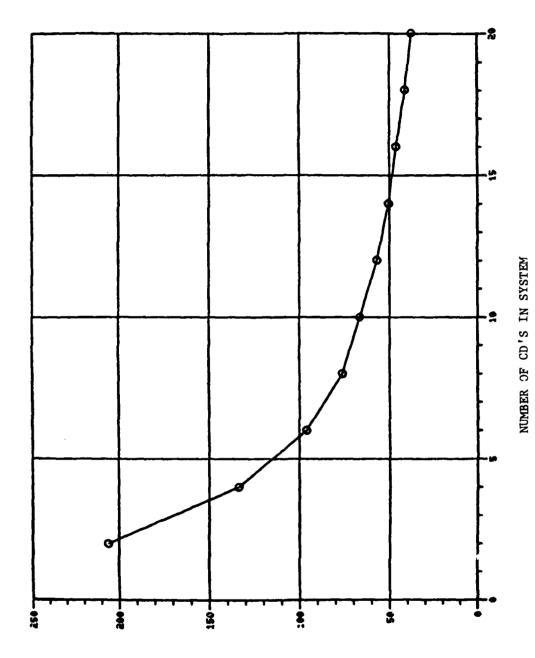


Figure 10. Port Request Activity for an Average CD

23

NUMBER OF PORTS REQUESTED

L.

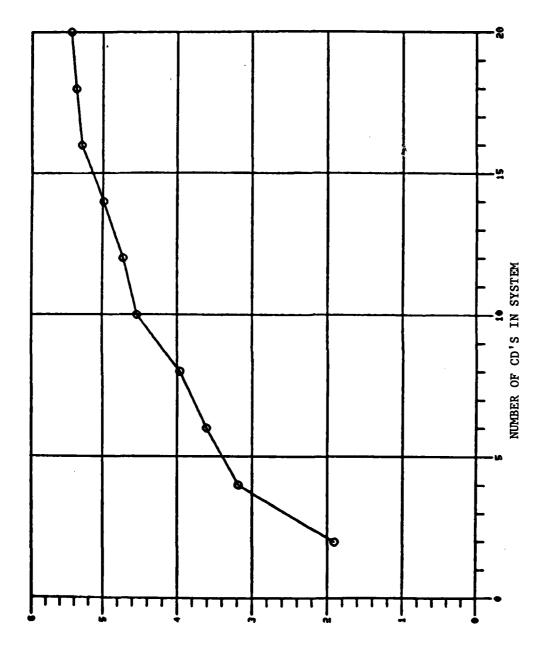


Figure 11. Number of CD's Utilized by a Typical Conference

NUMBER OF CD'S PER CONFERENCE

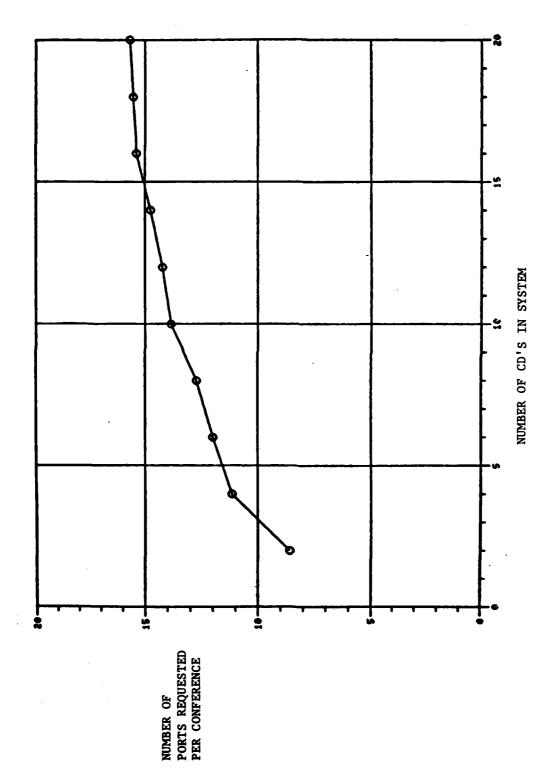


Figure 12. Ports Requested by an Average Conference

The previous figures have shown the process of requests for ports flowing through an AUTOVON network configured for a variable number of CD's. Any number of ports on a CD less than the total requested over a busy hour will lead to blocking on the CD, or denial of service. Appendix B discusses a mathematical queueing model of this process whereby the number of ports associated with a desired level of blocking can be evaluated (by a computer algorithm) from a knowledge of the distribution of numbers of ports requested for a given CD. This sizing in effect allows for more efficient use of the resources (ports) on the CD. No limitation is assumed in the study on the number of conference bridges available to the CD.

Table III shows the distribution of the ports on each CD in the system as determined by the queueing model described in Appendix B. These quantities were averaged over the three separate traffic simulations for the case of 48 conferences in the system and grade of service on the CD (blocking) of P.10.

It has already been seen that as more CD's are available to the network, they are utilized less and less frequently. This will also cause the number of ports, sized for an assumed level of blocking at the CD of P10, to decrease at a CD. The question is whether the total number of ports in the network will also decrease with increasing quantities of CD's. Figure 13 shows the total number of ports, sized for P10 CD blocking, for each configuration. This figure indicates that although the ports per CD are decreasing, the number of CD's is rising faster, resulting in an increase in the number of ports in the system. This is more than likely due to the total lack of economy of scale at the lighter loading levels produced with many CD's in the system. Adding CD's will, in general, result in more ports overall in the system.

TABLE III. DISTRIBUTION OF CD PORTS FOR VARIABLE NUMBER OF CD'S IN THE NETWORK (P.10 BLOCKING)

AUTOVON										
SWITCH			Num	ber of	CD!s	in t	he Net	work		
	2	4	6	8	10	12	14	16	18	20
Apache Junction								10	10	10
Arlington		43	39	38	36	36	34	24	27	28
Brewton						14	14	15	14	14
Cedar Brook							13	13	13	14
Cheyenne Mountain				16	15	15	15	13	13	12
Delta										7
Dranesville	57									
Fairview						12			9	9
Hillsboro			28		24	21	22	21	18	18
Julian				18	19	18	19			
Littleton					13	13	12	12	12	12
Lodi				14	14	14	14	11	11	11
Mojave		26	24					18	18	18
Moseley								19	19	16
Mounds		34					15	15	15	16
North Bend			8	8	8	8	8	8	8	8
Polk City									3	3
Rockdale		28	26	27	24	18	18	18	18	15
Seguin				20	19	19	14	14	11	14
Socorro	38									
Stanfield										14
Sweetwater			25							
Terre Haute				27	18					
Toledo Junction						19	19	18	18	18
Wheat land							6	5	5	6

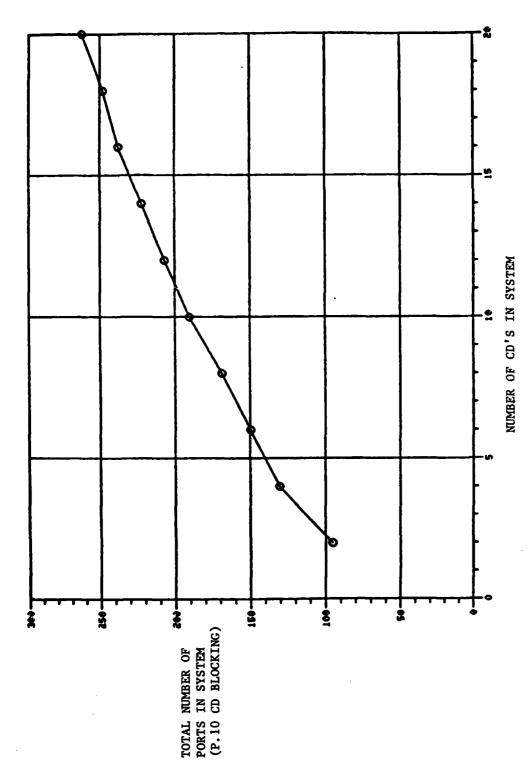


Figure 13. Total Number of Ports in System (P.10 Blocking on CD)

IV. SIGNIFICANT FINDINGS AND CONCLUSIONS

In this Technical Note we have studied the impact on CONUS AUTOVON of the addition of estimated SVIP conferencing requirements. This effort required two significant pieces of developmental analysis. The first was the generation of a representative traffic requirements matrix for SVIP conference calls; and the second was a development of a mathematical model to be used in sizing the ports on the CD. These two pieces of work are fully documented in Appendices A and B.

The study attempted to answer the following questions:

- a. How many CD's should there be in CONUS AUTOVON?
- b. Where should they be located?
- c. What is the port sizing required to meet the conference traffic requirements?
- d. What is the impact of accommodating the conferencing traffic requirements on AUTOVON?

A detailed analysis of these questions is given in section III; but some general statements can also be made. The number and locations of the CD's are highly dependent on the location and traffic requirements of the users. When one only considers the traffic requirements generated in this study, the optimal number of CD's is somewhere between 2 and 4. This result only considers the network implications of the CD's and their traffic; it did not consider the cost of the CD's themselves. When one considers the economies of scale in the port sizing aspects of the problem, and the cost of the CD's, one is forced to conclude that the optimal number of CD's is probably very small, probably two, considering cost impact. The survivability/reliability aspects of the problem have not been addressed in this report but could obviously impact the above conclusions.

REFERENCES

- [1] Letter dated 22 Feb 80 from DCA Headquarters Code 440, Titled, "Tasking to Perform Network Configuration Analysis and Life Cycle Cost Analysis for SVIP."
- [2] Letter dated 9 May 80 from DCA Headquarters Code 440, Titled, "Clarification of 22 Feb 80 Letter."
- [3] R. B. Cooper, Introduction to Queueing Theory, MacMillan, New York, 1972.
- [4] S. Lin, "Computer Solutions of Traveling Salesman Problems," BSTJ, December 1965.
- [5] S. Lin and B. W. Kernighaw, "An Effective Hueristic Algorithm for the Traveling Salesman Problem," Operation Research 21 No. 2, March-April 1973.
- [6] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, Holden-Day, Inc., San Francisco, California, 1967.
- [7] M. J. Fischer, D. A. Garbin, T. C. Harris, and J. E. Knepley, "Queueing Network Problems in Large Scale Communications Systems," OMEGA, 6, No. 3, 1978.

APPENDIX A GENERATION OF SVIP CONUS CONFERENCING TRAFFIC REQUIREMENTS

1. <u>Introduction</u>. In order to perform network analyses to determine the numbers, placements and sizing of SVIP Conference Directors within the CONUS AUTOVON network, it is necessary to have a set of busy hour conferencing traffic requirements. These traffic requirements should be specific enough to indicate the quantities of busy hour conferences, the locations where they originate, the numbers and locations of their conferees in a conference by conference basis and the holding time of a conference. In the absence of a set of detailed quantified requirements as described above, it has been necessary to generate, using Monte Carlo simulation techniques, an interim set of conferencing requirements. This appendix discusses the procedure, rationale and inherent assumptions made in arriving at an interim set of requirements. In the implementation of this procedure, certain parameters and probability distributions were subjectively chosen on the basis of a first cut estimation.

The basic data base from which these procedures derive is a set of 251 CONUS/Canada locations with busy hour originating SVIP (two party) offered traffic in erlangs. This data base was provided to R730 in the first quarter of CY 78 by R720 and is the result of an earlier analysis which used as input the CONUS/Canada portion of the CY 78 Secure Voice 10,000 subscriber list, and which derived originating offered traffic by location. This data base was used to provide CONUS secure voice traffic for use in the 1982-92 Ten Year Plan. It is presumed that prior analysis considered the numbers of subscribers (main stations, or instruments) at a location, an assumed amount of originating traffic per instrument (about 1.2 calls per busy hour), a turnaround ratio (about 70%) at the local concentrator and a sizing of access lines according to a desired blocking probability (about 10%). The resulting offered erlang traffic is thus a derivative of the locations of main stations in the CY 78 Secure Voice data base. A listing of the 251 locations is given in Figure A-1. Each line is a SVIP location and shows the location number, the 8 character DCA geographical location name, a 2 character state/country code, decimal latitude and longitude, V/H coordinates, and SVIP (two party) offered erlangs. The total traffic over the 251 locations was 545 busy hour erlangs.

The method for using this data to simulate SVIP conferencing requirements consists of three steps:

- 1. Determine the number of busy hour conferences originating from each location.
- 2. For each conference in step 1, determine the number of conferees participating in the conference.
 - 3. Determine the location of the conferee in step 2.

LGC#	LCC NAME	LAT	LUNG	v 	н	SVIP	TRAF	IN	ERLANGS
001	ACERDEEN24	39.492	70-136	5429	1533	3.465			
002	ALAMED 4 06	37.783	122-267	8491	8695	0-285			
003 004	ALBANY 36 ALEXANDR51	42.667 38.817	73.800 77.050	4641 5633	1638	0.543 1.668			
005	ALGTNHLS51	38. 967	77-100		1588	1.222			
006	ALTUS 40	34-667	99-267	8220	4602	3-673			
007 008	ANDFEWS 24 ARCATA 06	38.811 40.983	76.967 124.100	5622 7815	1549	1.550 0.069			
000	ARGENTIACA	47.310	53.991	1772	168	0.170			
010	APLING THE	39.917	77.083	5624	1592	6.837			
011	ARNOLD 47	35.333	86.083	7100.		0.343 0.554			
012 013	ATLNTCCY34 Augusta 23	3°•367 44•333	74 • 450 69 • 750	3955	1287 1370	0.554			
014	BANGOR 53	47.800	122.600	6297	8938	590.0			
015	BAFKSDAL 22	32.500	93.567	8267	3480	2.163			
016 017	BARSTOW 06 BATTLE CR26	34.900 42.317	117.000 85.183	8994 5713	7686 3124	0.240 0.857			
018	BEALE 06	39.136		8191	8596	0.968			•
019	BEAUSE JR CA	50.067	76.550	4963	5411	0.189			
020 021	BEAVELDGCA BERGSTRM48	55.217 30.195	119.433 97.653	9014 9014	8623 3976	0•109 5•059			
022	BIRMNGHM 01	33.517	86.817	7510	2447	0.343			
023	BLOYHGHSCA	53•617	122.950	5018	9052	. 0.109			
024	BLYTHVLL 05	35.964	89.946	7304	3188	1.189			
025 026	BOTHELL 53 BROOKS 48	47.762 29.346	122•203 98•432	6301 9239	2879 4045	0+284 0+278			
027	BRUNSWCK 23	43.900	69.967	4057	1333	1.806			
028	BUCKHNI'N54	30.000	80.233	5905	2047	0.277			
029 030	C DYER CA CANNON 35	65.617 34.334	61.300 103.317	-181 8518	4244 5270	1.383 1.071			
031	CARLSL BK 42	40.200	77.167	5401	1764	3.816			
032	CAESENCY32	35.192	119.735	8135	£301	0.507			
033	CAFSWELL48	32 • 76¢	97.437	8483	4143	1.155			
034 035	CASTLE 06 CHANUTE 17	37.331 40.292	120.569 83.144	8547 6330	8392 3338	0•709 0•468			
036	CHAFLS TN45	32.800	79.950	7020	1583	4.802			
037	CHATHAM CA	42.400	32.183	5451	2716	0.080			
038 039	CHERRYPT37 CHIRDUGMC#	34.900 49.950	76 •883 74 • 350	6329 3431	1067 2692	0.472 0.157			
040	CHINA L 06	35.637	117.689	3845	7837	0.851			
041	CHRLTSVL51	38.033	73.483	5518	1682	2.215			
042	CHANN 4 IN 05	38-317	104.717	7679 5574	5795 2543	4.247			
043 044	CLEVELNO39 CCLUM3US28	41.500 33.500	81.683 88.450	7660	2739	3+260 0+686			
045	CCLUMBUS39	39.967	33.000	5972	2555	0.796			
046	CEMEX CA	49.667	124-917	5505	9291	G-10°			
047 048	CONCORD 06 CORONADO05	37.983 32.700	122.050	3444	2652 7638	0.069 6.572			
045	CP DAVID24	33.817	76.867	5621	1550	0.203			
050	CP DRUM 36	44.050	75.733	4582	2067	0.820			
051 052	CPOCUGES55 CPLEUFUN37	43.917 34.657	90•267 77•350	5787 6419	4003 1108	0.336 1.104			
053	CPMUER Y53	47-117	122.567		8523	0.532			
054	CPPTCK TT51	37.050	77.933	6044	1483	0.151			
055	CPPOBLINGS	33.317 35.932	117.367	9865 8865	7692 8379	6.961			
056 057	CRANE 18	38.500	86.900	6498	3011	0.175 0.468			
058	CAPSCHES48	27.800	97.400	9475	3,30	0.261			
059	DANA CA	52-283				0-116			
061	DAYTON 39 DOVER 10	39.167	75.533		1400	8.001 3.358			
062	DUGWAY 49	40.200	112.933		7211	1.182			
063	DVSMYTHN04	32-165	110.982	9354	EARC	3-296			
064 065	DYESS 49 EARLE 34	32.417 40.017	99.850 74.600	371 <i>2</i> 5185	4531 1392	3.431 9.313			
066	EDMENTONCA	53.550	113.467		7821	2.023			
067	EDWARDS 06	34.905	117.893	9018	7547	2.979			
068 069	FGLIN 12 ELLSWRTH46	30.433 44.146	86.500 103.104		20.67 5380	9•612 1•977			
070	ENGLAND 22	31.373	92.550		211.7	0.570			
071	FAIRCHLD53	47-625	117.650	6259	2210	2.392			
072 073	FE WARPENSS	41-150	104.800 90.833	7200	5956 3034	1.907			
073 074	FLONARDGCA FDRBES 20	46•617 33•952	95.662		4359	0.075 0.117			
075	FRANKFET21	38.217	84.933	6456	2631	0.090			
076	FRESNO 06	36.783	119.750		8233 5646	0.175			
077 078	FT BLISS46 FT BRAGG37	31.900 35.133	70.983	9218 6496	1408	4•365 8•981			
075	FT DIX 34	40.017	74.550	5160	1365	ĭ.ćža			

Figure A-1. Listing of SVIP Locations $$\rm A-2^{'}$$

```
FT HUGD 48
FT KNCX 21
FT LEWIS53
FT MCCCY55
                                      31.133
37.900
47.083
43.150
39.100
080
                                                        97.767 8833 4070
                                                                                                     7.001
                                                        85.983
                                                                                 2770
                                                                                                     1.504
2.465
0.336
08 1
0 82
                                                                      6613
                                                                      6455
5926
                                                      122.600
063
                                                        90.133
                                                                                  3910
            FT
084
                   MEA DE 24
                                                      76.833 5567
121.767 8730
                                                                                 1580
                                                                                                     6-14C
5-351
                  ORD
                            06
                                       36.650
                                                                                 8580
                                                       93.192 8518
96.783 7178
98.402 8168
77.133 5671
                   POLK
                                       31.046
                                                                                                      0.911
086
                                      39.067
                                                                                 4544
                                                                                                     3.032
7.063
087
            FT RILEY20
                                      34. 650
38. 683
088
            FT SILL 40
FTRELVCF51
089
                                                                                                     0.5E4
                                                                                  1570
                                                     77-133 5671

84-883 7564

86-017 6246

104-800 7700

87-483 6972

77-433 556

84-350 7289

82-133 7116

110-340 9454

30-933 6884
                                                                                  2018
                                      32.383
39.850
38.733
090
            F TBENNNG 13
                                                                                                      2.832
091
092
            FTENHR SN 18
FTC#AS ONOR
                                                                                                     0.936
4.144
                                                                                  5603
             FTCMPBLL 21
                                       36.667
                                                                                                      3.542
093
                                                                                  2872
                                      39.433
33.583
33.417
31.580
                                                                                  1705
            FTDETRCK24
FTGILLEM13
094
                                                                                                     0.610
065
                                                                                  2060
                                                                                                     1.816
056
             FIGORDON13
                                                                                  1663
                                                                                                      1.816
            FTHUACHCOA
FTJACK SN 45
097
                                                                                                      5.318
                                                        30.933 6884
92.117 7124
94.917 7000
85.783 7201
                                       34.050
37.733
39.350
                                                                                  1578
058
                                                                                                     7.095
            FTLNRDWD29
FTLVN#8T20
                                                                                  3636
                                                                                                     1.418
100
                                                                                  4276
            FTMCCLLN01
FTMCPHSN13
FTMCNMTH34
                                       34.717
33.700
40.300
101
                                                                      7201
                                                                                  2406
                                                                                                     0.687
                                                       550-783-7201
84-417-7273
74-050-5080
76-300-5886
76-300-5886
97-816-5935
98-450-9218
81-600-7357
102
                                                                                  2083
                                                                                                   10.320
3.888
                                                                                  1356
103
104
                                       37.033
                                                                                  1247
                                                                                                      7.451
             FTMONROE51
            FTRITCHI 24
FTSHERDN 17
FTSMHSTN48
                                       39.733
42.223
29.450
105
                                                                                  1740
                                                                                                    10.511
                                                                                                     2.302
106
                                                                                  3497
                                                                                  4058
             FISTEWRI13
GANDER CA
GEORGE 06
                                                                                  1435
108
                                       31.650
                                                                                                      0.380
                                       48.550
34.583
42.083
                                                      54.567
117.533
87.817
                                                                      1611
                                                                                  547
7769
109
                                                                                                     0.080
                                                                                                     2.687
0.329
110
111
             GLENVIEW 17
                                                                       5962
                                                                                  3472
                                       31 - 430 47 - 917
                                                                                                     0.546
112
             GOODFL LW48
                                                      100.401
                                                                       8947
                                                                                  4554
                                                        97.050
84.744
75.407
86.150
72.200
87.818
75.607
             GR FORKS38
GRAYLING26
GRIFFISS36
                                                                      5421
5234
113
                                                                                  5302
                                       44.690
                                                                                                      0.197
114
                                                                                  3321
                                                                       4696
                                                                                  1918
                                                                                                      5-121
116
                                                                      6105
4717
5920
             GRISSOM 18
                                       40.650
                                                                                  3033
                                                                                                      2.184
                                       41.317
42.302
             GROTOM
GT L
                                                                                                     2.578
2.016
                              09
17
                                                                                  1250
118
119
120
121
             GTWLMG TN10
GYPSMVLLCA
HARTFORD 09
                                       39.678
51.750
41.750
                                                                       5344
                                                                                  1485
                                                                                                      0.277
                                                        98.583 4727
72.700 4692
                                                                                  5807
1373
                                                                                                     0.189
0.543
122
                                       38.527
                                                      118.625
                                                                                  8094
             SE NOUNTW AH
                                                     118.625 8254
112.017 6336
111.967 7503
128.017 5725
106.100 8984
800.467 3434
86.167 6277
76.633 5321
92.156 6953
75.066 5198
120.333 5639
94.587 9243
                                                                       8254
                                                                                                      1.015
             HELENA
123
                                       46.600
                                                                                  7347
7055
                                                                                                      0.089
             HILL 49
HOLPERG CA
HOLLOMAN35
                                       41.117
50.517
32.850
124
                                                                                                      4.387
                                                                                  9727
                                                                                                      0.109
125
126
                                                                                  5655
                                                                                                      1.575
                                       25.483
39.750
40.367
33.572
             HOMESTED 12
INDIMPLS 18
INDITWGP42
                                                                                  542
2991
1712
                                                                                                     4.304
 128
                                                                                                      0.000
129
                                                                                  3781
1476
8661
4107
4072
8705
 130
             JFFRSNCY29
                                                                                                     0.177
0.519
                                       33.572
40.199
50.667
39.033
29.367
             JOHNSVLL42
KAMLOOFSCA
 131
132
133
134
                                                                                                      0 1 09
             KANSAS CY29
                                                                                                      0.132
             KELLY 48
KGSLYFLD41
                                                                                                    18.564
0.507
2.159
                              48
                                                                       9243
7524
                                                        98.567
                                                     121.736
108.350
37.394
103.511
                                       42.163
36.733
 135
                                                                                  6274
                                                                       3284
             KIRTLANDSS
KISAWYER 26
136
137
                                       46.354
37.983
29.400
                                                                       5116
7780
                                                                                  3855
                                                                                                      2.056
138
             LA JUNTADE
LACKLAND48
LAKEHRST34
                                                                                  5544
4021
                                                                                                     0.220
                                                     103.511 778c
98.600 9233
74.354 5157
77.167 5626
84.553 5533
95.250 7098
75.117 5454
84.500 6452
71.277 4422
92.253 7721
118.233 9277
118.233 9277
118.400 9241
                                       40.033
38.950
42.750
38.967
38.783
                                                                                                      0.867
                                                                                  13/51
140
             LANGLEY 51
LANSING 26
 141
                                                                                    609
                                                                                                      2.823
                                                                                                     0.355
0.233
0.277
 142
                                                                                  3087
                                                                                  425
143
144
145
             LAWPENCE20
LEWES 10
LEXINGTN21
                                                                                  1303
                                       38.083
42.490
34.733
                                                                                  2567
1295
                                                                                                      0.226
             LGHANSCM25
LITTLRCK05
                                                                                                     8.013
5.961
 146
                                                                                  3444
 147
                                       34.733
33.750
46.950
33.947
49.530
39.533
33.552
43.083
148
149
             LONGUE CHOE
                                                                                   7864
                                                                                                      4.866
                                                                       3334
9241
7502
                                                                                  1540
7501
5802
             LORING
                                                                                                      0.966
                                                     115.400
104.900
83.000
77.650
150
151
152
             LOSANGLSOG
LOWFY OF
LOWTHER CA
                                                                                                      2.128
                                                                                                      1.414
                                                                        4196
                                                                                   3649
                                                                                                      0.075
153
             LTTKKNNY42
                                                                                  1803
                                                                                                      1.111
                                                                       5486
                                                      112.383
92.517
                                                                       9130
                              04
             LUKE
                                                                                  1146
3794
                                                     92.517
39.367 5834
111.167 6119
117.250 9220
122.267 8422
71.550 4447
155
156
              MACDILL
              MADISCH 55
                                       43. 0A3
                                                                                                      0.336
              MALMSTEM 30
                                       47.500
33.893
                                                                                  7243
  57
                                                                                                      1.430
                                                                                                      7.674
              MARCH
                               06
                                                                                  7692
158
159
                                       38-110
42-500
                                                                                                      0.065
                               06
                                                        71.550
             MAYNAPA
 160
                                                                                  1330
                                                                                                      0.581
                                                                       7610 1244
                                        30.470
              MA YPURT 12
                                                                                                      0-916
 161
```

Figure A-1.

Listing of SVIP Locations (Continued)

```
47.148 122.479 6439
38.667 121.399 8282
                               MCCHORD 53
162
                                                                                                                                                                                                         8911
                                                                                                                                                                                                                                                          5.717
                                                                                                                                                                                                                                                           3.304
163
                                 MCCLELLN06
                                                                                                                                                                                                          8568
                              MCCLELINGO
MCCONNLL 20
MCGUIFE 34
MCNC 38PG 42
MEMPHIS 47
MILWAUKE55
MINGT 38
MOODY 13
                                                                                                                                          97.267
74.583
77.017
                                                                                                                                                                                                                                                          3.142
 164
                                                                                                37.617
                                                                                                                                                                                7499
                                                                                                                                                                                                          4503
                                                                                              37.617
40.033
40.217
35.117
43.033
48.267
30.967
39.650
43.050
165
                                                                                                                                                                              5180
                                                                                                                                                                                                          1392
166
167
                                                                                                                                                                               5384
7479
                                                                                                                                                                                                          1745
                                                                                                                                                                                                                                                          0.203
                                                                                                                                           20.063
                                                                                                                                                                                                                                                          0.149
                                                                                                                                    37.917
101.317
83.200
79.917
                                                                                                                                                                              5787
5567
7676
5757
 168
                                                                                                                                                                                                          3584
                                                                                                                                                                                                                                                          0.329
                                                                                                                                                                                                         5914
1595
2079
 169
                                                                                                                                                                                                                                                           1.885
170
171
                                                                                                                                                                                                                                                          0.340
                                MORGHT WN 54
                                                                                                                                                                                                                                                          1.111
                               MTN HCME 16
N LOMDON 09
NASHVILL 47
                                                                                                                                                                              7203
4703
7014
                                                                                                                                                                                                                                                          0.311
                                                                                                                                     115.867
                                                                                                                                                                                                          7795
                                                                                                                                    72.117 4703
86.300 7014
71.350 4464
115.033 8648
71.300 4642
79.467 4506
                                                                                                41 • 350
36 • 150
42 • 283
                                                                                                                                                                                                         1244
2713
1275
173
174
                                                                                                                                                                                                                                                          0.343
                               NATICK 25
NELLIS 32
NEWPORT 44
NU BAY CA
NORFOLK 51
 175
                                                                                              36.233
41.217
46.317
36.667
176
177
                                                                                                                                                                                                          7395
                                                                                                                                                                                                                                                           3.298
                                                                                                                                                                                                         1121
2835
                                                                                                                                                                                                                                                          0.126
178
                                                                                                                                                                                                                                                          1.134
                                                                                                                                    76.233
90.117
117.236
76.300
                                                                                                                                                                                                          11¢1
2647
                                                                                                                                                                               5945
                                                                                                                                                                                                                                                     11.641
                                                                                               29.967
34.092
40.217
40.717
                                NCRLE ANS22
NURTUN 06
                                                                                                                                                                             8483
9175
5373
 180
                                                                                                                                                                                                                                                           4.441
                                                                                                                                                                                                         7698
1730
                                                                                                                                                                                                                                                          4.520
181
                                                                                                                                                                                                                                                          0.967
                                NACHBL ND42
                               NYORK CY36
DAKLAND 06
DCE3NA 51
DEFUTT 31
 183
                                                                                                                                           74.017
                                                                                                                                                                              5004
                                                                                                                                                                                                          1406
                                                                                                                                                                                                                                                          6.091
                                                                                                37.783
36.822
                                                                                                                                     122.216 8450
76.032 5896
95.917 6710
184
                                                                                                                                                                                                          86.86
                                                                                                                                                                                                                                                           0.069
                                                                         51
31
49
                                                                                                                                                                                                         1182
                                                                                                                                                                                                                                                          1.673
                                                                                                                                                                                                                                                         5.050
                                                                                               41.133
                                                                                                                                                                              6710
7478
                                                                                                                                                                                                         4550
7100
166
187
                                OGDEN
                                                                                                                                     111.967
                                                                                                                                         97.533 7949
73.033 4806
75.700 4332
98.533 8275
                                DKLAHMCY40
                                                                                               35.467
41.233
45.450
                                                                                                                                                                                                                                                          2.939
0.271
0.383
 188
                                                                                                                                                                                                          4375
                                CRANGE OS
OTTAWA CA
                                                                                                                                                                                                          1353
189
190
                                                                                                                                                                                                          2246
                                                                                                                                                                                                                                                    0-142
1-744
2-436
15-906
                                PASCAGOLZE
PATRICK 12
PEASE 33
                                                                                                                                                                                                         2415
871
1321
                                                                                                30.350
                                                                                               29-238
43-033
38-867
39-950
                                                                                                                                          80.603 7934
70.817 4274
77.050 5630
192
193
 194
                                PENTAGON51
                                                                                                                                                                                                          1581
 195
                                PHILDL PH42
PICATNNY34
PLTSBRGH36
                                                                                                                                           75.163
                                                                                                                                                                               5252
                                                                                                                                                                                                          1460
                                                                                                                                                                                                                                                          5.256
0.277
                                                                                                40.017
44.650
196
                                                                                                                                          74.600 5135
73.467 4265
                                                                                                                                                                                                          1362
                                                                                                                                                                                                                                                          1-414
                                                                                                                                     79.015 6492
119.217 9217
122.617 6803
76.400 5925
198
                                                                           37
                                                                                                35.171
                                                                                                                                                                                                          1417
                                                                                              34.150
45.500
36.867
37.800
34.117
                                PORTHUNMO6
POPTL ND 41
PORTSMITHS1
                                                                                                                                                                                                                                                           0.426
                                                                                                                                                                                                        3906
200
                                                                                                                                                                                                                                                          0.566
 201
                              PURISMITHS I
PSD SMENC 06
PT MUGU 06
PT REYES 06
QUANTICCS I
CALL LEFH40
RCCDSGBR 29
REDSTONE 01
                                                                                                                                                                             5925 1249
6491 6727
9222 8036
8455 8620
5720 1571
                                                                                                                                122-451 6491
119-117 9222
122-367 8455
77-300 5720
98-279 9190
  202
                                                                                                                                                                                                                                                          5.551
203
                                                                                                                                                                                                                                                          1.158
                                                                                                38.000
37.500
25.529
204
                                                                                                                                                                                                                                                          0.069
  205
                                                                                                                                                                                                                                                          0.871
206
                                                                                                                                                                                                         4033
4177
2535
                                                                                                                                                                                                                                                           1.556
                                                                                                                                98-279 9199
94-553 7075
86-667 7295
102-033 8605
77-350 5650
77-433 5901
63-562 7397
                                                                                                39.851
34.617
207
                                                                                                                                                                                                                                                          3.265
                                                                                                                                                                                                                                                         8.928
0.24?
 208
                                                                                               34.017
37.000
38.917
37.567
32.640
41.536
                                                                                                                              2005 4995 1630 77.433 5501 1475 83.552 7397 1339 90.569 6270 3317 123.017 6933 8969 111.883 7574 70.66 50.500 9223 4064 122.717 8356 3787 39.350 6756 3422 70.967 4890 121.267 27
                               RELSE 48
RESTUN 51
RICHMOND51
 209
                                                                                                                                                                                                          4995
210
                                                                                                                                                                                                                                                          4.239
                                                                                                                                                                                                                                                          0.574
                              PUBINS 13
FUCK I 17
SALEM 41
SALTE CY49
SANAUTEN43
                                                                                                                                                                                                                                                         0.597
5.261
212
                                                                                              41.536
440.767
27.430
27.430
27.430
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.630
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6300
27.6
                                                                                                                                                                                                                                                          0.532
 214
 215
                                                                                                                                                                                                                                                          1.161
 216
                                SANT ARE SON
SCOTT 17
SEMFICE 36
                                                                                                                                                                                                                                                          0.069
218
                                                                                                                                                                                                                                                         7.280
                              0.138
2.537
                                                                                                                               121-257 3462
120-500 8084
92-900 4701
90-417 6819
93-083 5774
121-233 3437
77-960 6357
75-417 5059
112-317 7614
121-433 8483
121-427 8366
121-927 8366
121-927 8366
121-550 9125
77-567 5713
83-017 5509
 221
                                                                                                                                                                                                         £438
                                                                                                                                                                                                                                                          0.376
                                                                                                                                                                                                          4825
 222
22.3
                                                                                                                                                                                                          3510
                                                                                                                                                                                                                                                          4.416
                                                                                                                                                                                                          4477
                                                                                                                                                                                                          9530
                                                                                                                                                                                                                                                         0.059
0.497
0.229
 225
                                                                                                                                                                                                         1280
226
227
228
                                                                                                                                                                                                          1553
                                TOCCLE
                                                                                                                                                                                                                                                           1.182
                                                                                              40.5323

37.723

37.7221

39.221

40.07

34.736

41.736

42.60

42.60

42.66

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

43.736

                                                                          20
                                                                                                                                                                                                          4765
229
                                TOPEKA
                                                                                                                                                                                                                                                          0.117
                                                                                                                                                                                                         8551
8640
                                                                           06
                                                                                                                                                                                                                                                         0.069
                                TRACY OF TRAVIS OF TRENTON 34 TYNDALL 12 VANDUBAGOS
                                                                                                                                                                                                                                                          0.831
7.483
 232
                                                                                                                                                                                                          1438
                                                                                                                                                                                                          1301
233
                                                                                                                                                                                                                                                          9.227
0.706
 234
                                                                                                                                                                                                          1651
 235
                                 VINTHILL51
                                 WARRICK 44
WASHING THIL
                                                                                                                                          53.017 5509
71.303 4568
77.017 5621
 236
                                                                                                                                                                                                          22.50
                                                                                                                                                                                                                                                          4.618
                                                                                                                                                                              4568
5621
4597
                                                                                                                                                                                                          1198
237
238
                                                                                                                                                                                                                                                     10.074
                                WESTAVER 25
WESTAVER 25
  239
                                                                                                                                           72.550
                                                                                                                                                                                                                                                          0.814
240
241
242
                                                                                                                                                                                                                                                          4.416
                                                                                                                                    84.053
122.651
                                                                                                                                                                             6032
                                 WHIDDE YISS
                                                                                                                                                                                                          F 5 5 3
                                                                                                                                                                              5178
                                                                                                                                                                                                         4010
                                 WHITEMAN 29
                                                                                                                                           93.550
                                                                                                                                                                               7022
                                                                                                                                                                                                                                                          2.566
 243
                                 WILDER
                                                                          16
                                                                                                43,667
                                                                                                                                     116.917
                                                                                                                                                                             7101
```

244	WILLIAMS04	35-250	112-183	8756	5855	0.088
245	WINCHSTR51	39.167	78.200	5686	1779	1.359
246	WI NOOSKI 50	44.500	73.183	4264	1309	0.157
247	WN THHE BR 23	44.400	68.083			0.297
248	WR THNG TN39	40.083	83.033			0.159
249	WURTSMITH 26	44.451	83.394			1.775
250	YAKIHA 53	46.600	120.500			0.832
251	YCAKTON CA	51.267	102.467	5003	6273	0.116

Figure A-1. Listing of SVIP Locations (Continued)

2. Step One. The locations that originate conferences are determined by the amount of SVIP traffic originating from them. That is, the number of busy hour conferences originating from a location is assumed to be proportional to the SVIP traffic offered from that location. This rule is implemented in the computer by ranking the locations according to their erlang traffic, partitioning the erlang scale of traffic into a number of intervals, and assigning quantities of originating conferences to locations in these intervals in a manner which increases with increasing traffic. Specifically, an ordered set of erlang cut points, c_0 c_1 , c_2 ... are specified so that a location will be assumed to generate i conferences during a busy hour if its SVIP originating erlang traffic is in the range from C_i to C_{i+1} (C_0 =0). The selection of these cut points effectively determines the number of conferences in the set of requirements and is the means by which the volume of requirements is controlled. Increasing one or more cut points will lower the overall number of conferences and vice versa. Figure A-2 shows the result of choosing erlang cut points of C1=5, C2=8.

Erlang Interval	Number of Locations	Number of Conferences	Total Conferences
0. to 5.0	215	0	o
5.0 to 8.0	24	1	24
greater than 8.0	12	2	<u>24</u>
Total	251		48

Figure A-2. Distribution of Number of Origination Conferences by Location

In this case, 215 of the 251 locations originate no conferences, while 24 locations each generate one conference and 12 locations two. This results in a total of 48 busy hour conferences being generated. The choice of cut points can be parametrically varied, in effect, to throttle the number of conferences in the data base, all the while keeping the rule that the more SVIP traffic emanating from a location, the greater the number of SVIP conferences being generated.

3. Step Two. For each originating conferencing requirement, it is next necessary to know the number of conferees associated with it. This is accomplished by Monte Carlo sampling from an assumed probability distribution which is input to the program. The assumed distribution could be Normal or any other type and could be modified by actual data. The distribution currently being used is as follows:

Number of Conferees (Excluding Originator)	Probability
1	0.0
2	0.083
3	0.125
4	0.167
5	0.167
6	0.125
7	0.104
8	0.083
9	0.063
10	0.042
11	0.021
12	0.021

First, no probability is assigned to one conferee; this event is equivalent to a two-party call. Second, it was anticipated that the majority of conferences would have somewhere around four to five conferees, so these values show the highest probability. From 6 to 12 conferees the probability decreases regularly. The average, or expected number of conferees, per conference for this distribution is 5.66 (or an expected 271 conferees over the 48 conferences of step one). One Monte Carlo sampling distribution of the 48 conferences according to the number of conferees each conference generated is shown below:

NUMBER OF	NUMBER OF	CONFERENCES
CONFEREES	Observed	Expected
1	0	0.
1	0	•
2	7	4.
3	6	6.
4	5	8.
5	12	8.
6	4	6.
7	5	5.
8	3	4.
9	2	3.
10	4	2.
11	0	1.
12		1.
	Total 48	48

This distribution can be easily altered, if more specific data becomes available.

4. Step Three. Having determined, for each conference, the number of conferees by sampling from an a priori distribution, it is then necessary to determine the community-of-interest or destination locations for the conferees. A detailed mission analysis of each location could provide this data. However, until such specific information becomes available, it is assumed that the conferees are geographically located proportional to the SVIP originating traffic emanating from the locations. A probability distribution is created in which the probability of selecting a conferee location is equal to the location's fraction of total SVIP erlang traffic. One sample from this distribution is made for each conferee of every conference. In this manner, the locations for the conferees are selected randomly, but in proportion to the amount of SVIP traffic they represent. No attempt is made to prevent multiple occurrences of a conferee location for a single conference, or of a conferee being collocated with the originator. Figure A-3 is a listing of the set of 48 conferences showing on each line the conference number (1 thru 48), location number (1 thru 251) of the originator, the number of conferees, and the locations of the conferees (1 thru 251). The location numbers refer to the ordinal position in the listing of Figure A-1.

Holding time statistics for a SVIP conference are generally unavailable. An expected holding time of 10 minutes, constant for all conferences, is currently being assumed. On the originating side, this would equate to 48/6 = 8 erlangs of traffic, and on the destination (conferee) side 271/6 = 45.17 erlangs which would correspond to 271 independent two-party calls. The effect of these conference requirements upon current CONUS AUTOVON is very much dependent upon the number of conference directors in the network and the routing of calls from (1) originating location to local CD, (2) CD to CD spanning all CD's active for a given conference, and (3) each remote CD to its associated set of conferees. The effect of these routings as well as placement and quantity of conference directors is discussed in the main body of this report.

					115	S _s							29	195
į					ය ව	<u>യ</u>		3	ä				233	15
9		213			~	233		218	800 800 800 800 800 800 800 800 800 800				25	23
ONFEREE	8	8	176		3Ř	ß	R	8	88			158	238	1 74
CONF	*	5	6	23	222	169	167	163	11.0	174	110	8	2 0	-
8	183 162	12 86 221	124	8	233	213	28			203		2.2 2.2 2.2	105	•
NUMBERS	179 179 186	80228	185	134	% R. V.	### ## ## ## ## ## ## ## ## ## ## ## ##				sž si		100 100 100 100 100 100 100 100 100 100	83	•
	4 E 5 4 6	8282 4	22		1841	ន្តកម្មនិត្តក្នុ	328	EZ;	18 %	in Si	22	588		
NOL	\$82°C	1585 1685 1685 1685 1685 1685 1685 1685	22822	288	488	. 24.9 	200	288	in i	25.5	78.	2000	19	18
LOCAT	SEE 5	28.25.25.25.25.25.25.25.25.25.25.25.25.25.	20000	25.25 25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	2322	348 08	200 c		128			422	:53	88
PEES														
	~ ₩₩ ~ (າທທທາ	no or	⊕ ~•п	1N G N44	mur (n ch .	T (3) (4)	in (d) (i)		พคา	721	2 0 0
100	! ! !						•				01 60 f		• •	20 00
0R1G	3.63K	900000	- 00 00 00 00 00 00 00 00 00 00 00 00 00	28.53	200 200 200 200	111111 10044 14406	2.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	22	200	9 9 9.	88	นี้ก็ก็ก็	i di	N N N
*	-4004	00-00	22027	1929	2282	188888	888	88	8 8 8 8	868	84:	1441 1441	44	4 4 5 8
00														

FIGURE A-3 LISTING OF CONFERENCE REQUIREMENTS

・火きを見るのもありまとうなっます。

APPENDIX B

CONFERENCE DIRECTOR PERFORMANCE AND SIZING MODEL

1. INTRODUCTION

In this study we have assumed that each conference director had to be mollocated with a switch. The switch and the conference director are connected via ports on each equipment. When a conference call requires use of the conference director, it will require the use of more than one port. This number will depend on such things as the number of conferees in the conference, the location of the conferees in the conference and whether this particular switch/conference director pair is in a tandem path for the conference. Thus, calls will arrive at the ports and require a random number of ports, depending on the particular conference. Since we do not allow the buffering of calls, the performance of the calls requesting use of these ports can be considered as a loss queueing system where customers (calls) may require more than one server (ports).

To be capable of quickly and efficiently determining the number of ports required to ensure a given level of blocking, we need to develop a mathematical performance model for this system. It has not been until recently that queueing systems where customers require the use of more than one server have been investigated [1]-[5]. In those papers, queueing of customers was allowed. In a different context reference [6] solved the same problem we are discussing here. We did not discover their work until we had

independently developed our analysis, and as such we discuss our development, which is tailored to our application.

In section 2 of this appendix, we develop a mathematical model that can be used to predict the performance of the system. Also discussed in that section is a methodology for the sizing of the ports so as to ensure a desired grade of service. Section 3 contains an extensive numerical investigation of the system and possible sensitivities.

2. MATHEMATICAL PERFORMANCE MODEL

Let S be the number of ports connecting the conference director and the switch. We assume the arrival process of calls to the ports is Poisson with parameter λ ; and that Q_n , $n=1,2,\ldots N$, is the probability the call requests n ports. Without loss in generality we further assume NS. If an arriving call requesting the use of n ports does not find n ports free it is dismissed from the system. Let us assume the holding time of a call requesting n ports is exponientially distributed with mean μ_n^{-1} . We assume that the call maintains control of the n ports for its entire holding time, at the conclusion of which time it releases all of the ports.

Let $\frac{C}{n}$ be the steady state number of conference calls, who requested n ports, in the system and define

$$P_{i_1, i_2}, \ldots, i_N = Pr\{c_1=i_1, c_2=i_2, \ldots, c_N=i_N\},$$
 (B.1)

with PL being the probability a call requesting n ports is lost. It is intuitively obvious that

$$PL_{1} \stackrel{<}{=} PL_{2} \stackrel{<}{=} \dots \stackrel{<}{=} PL_{N}$$
 (B.2)

since a call requesting n ports is not blocked as much as a call requesting (n+1) ports and we do not allow any preempting.

Let

$$S^* = \max\{r | r \leq S - \sum_{t=1}^{N} t i_t \text{ and } r = 0, 1, ..., N\}$$
(B.3)

then the steady state equations for P_{i_1,i_2},\ldots,i_N are

$$\begin{bmatrix}
\sum_{n=1}^{S^{*}} \lambda Q_{n} + \sum_{n=1}^{N} i_{n} \mu_{n} \end{bmatrix}^{P} i_{1}, i_{2}, \dots, i_{N} = \sum_{n=1}^{N} \lambda Q_{n} P_{i_{1}}, \dots, i_{n}^{-1}, \dots, i_{N} + \\
\vdots \\
\sum_{n=1}^{S^{*}} (i_{n}^{+1}) \mu_{n} P_{i_{1}}, \dots, i_{n}^{+1}, \dots, i_{N}$$
(B.4)

when $\sum_{r=1}^{N} r_{i_1} \leq S$; $P_{i_1, i_2}, \dots, i_N = 0$ if there exist an $i_r < 0$ or if

$$\sum_{r=1}^{N} ri_{r} > S.$$

It is straightforward to show that if $\rho_n=\lambda Q_n/\mu_n$ for $n=1,2,\dots,N;$ the solution to these equations is

$$P_{i_1,i_2...,i_N} = \frac{\frac{i_1}{\rho_1}}{\frac{i_1!}{i_1!}} \frac{\frac{i_2}{\rho_2}}{\frac{i_2!}{i_2!}} \cdots \frac{\frac{i_N}{\rho_N}}{\frac{i_N!}{i_N!}} P_{0,0,...0},$$
 (B.5)

where $P_{0,0,...,0}$ is found by the normalizing condition to be

$$P_{0,0,\ldots,0}^{-1} = \sum_{\substack{r_1=0 \\ r_1=0}}^{\lfloor \frac{S-r_1}{2} \rfloor} \left[\frac{\frac{S-r_1 \cdots - (N-1)r_{N-1}}{N}}{\sum_{\substack{n \\ r_1=0}}^{N} \prod_{\substack{r_2=0 \\ r_2=0}}^{n} \frac{\rho_r}{r_1} \right]$$
(B.6)

where [x] is the greatest integer $\leq x$. So the problem rests on being able to evaluate the sum given in equation (B.6). Arthurs and Kaufman obtained the same solution for their problem and also showed that the results hold for general holding times.

The following iterative scheme can be used to quickly evaluate this sum. For $j=0,1,2,\ldots S$ define

$$f(N_r j) = \sum_{r=0}^{\lfloor j/N \rfloor} \frac{\rho_N}{r!};$$
 (B.7)

and for i=N-1, N-2, ..., 2, 1 and j=0, 1, ..., S define

$$f(i,j) = \sum_{r=0}^{[j]} \frac{\rho_i^r}{r!} f(i+1,j-ir).$$
 (8.8)

It is interesting to reflect on what f(i,j) represents and to draw some parallels between this recursion scheme and those that appear in Dynamic Programming. The quantity f(i,j) can be considered as one has j ports to be

distributed among the call requesting i, i+1, ..., N ports. In [6] they used the same scheme to determine $P_{0,0,\ldots,0}$; it is similar to the one Buzen [7] used to compute the normalizing constant in the context of network of queues. In that context Kobayashi [8] gives a summary of the methods that have been used to efficiently determine these constants.

The required sum is given by f(1,S), so

$$P_{0,0,\ldots,0} = \frac{1}{f(1,S)}$$
 (B.9)

We note in evaluating equations (B.7) and (B.8) only two vectors of length S+1 have to be stored in the computer.

It turns out that some additional information is directly contained in f(1,j) for $j=0,1,\ldots,S$. Let X present the steady state number of busy servers; then with a little thought one sees for $j=0,1,\ldots,S$

$$Pr\{X=j\} = \frac{f(1,j)-f(1,j-1)}{f(1,S)}$$
 (B.10)

where f(1,-1) = 0. Using equation (B.10) the loss probabilities PL can be quickly found, for n = 1, 2, ..., N

$$PL_{n} = \sum_{r=S+1-n}^{T} Pr\{X=r\} = PL_{n-1} + Pr\{X=S+1-n\}$$
(B.11)

where $PL_0 = 0$. From equation (B.11) one directly sees the inequality relationship given by equation (B.2). Finally, the overall average loss probability, PL, is

$$PL = \sum_{n=1}^{N} \rho_n PL_n / \rho$$
 (B. 12)

where
$$\rho = \sum_{n=1}^{N} \rho_n$$
.

Although equation (B.11) gives us the most desirable measure of performance for the system, the iteration procedure described via equations (B.7) and (B.8) can also be used to give other system performance characteristics. Let $F(T,\theta_n)$ the corresponding value of f(1,T) when we recursively use equations (B.7) and (B.8) with S=T and $\theta_n = (\rho_1,\rho_2,\ldots,\rho_{n-1},\rho_{n+1},\ldots,\rho_{N})$. The vector θ is equivalent to a vector of the ρ_i 's

but with ρ_n set to 0. The probability distribution of the number of calls, who requested n ports, in the system is given by

$$\Pr\{C_n=i\} = \frac{\rho_n^i}{i!} \frac{F(S-ni,\overline{\theta}n)}{f(1,S)}$$
 (B.13)

for i = 0,1,..., [S/n] and n = 1, 2, ..., N.

The same procedure may be used to evaluate the joint probability of C_m and C_n for any m and n. If $\theta_{m,n}$ is the vector of $\rho_i^{'ss}$ with $\rho_m = \rho_n = 0$ then

$$Pr\{C_{\underline{m}}=i,C_{\underline{n}}=j\} = \frac{\rho_{\underline{m}}^{i}}{i!} \frac{\rho_{\underline{n}}^{j}}{j!} \frac{F(S-i\underline{m}-j\underline{n},\overline{\theta}_{\underline{m},\underline{n}})}{f(1,S)}$$
(B.14)

Using the concept of carried load [9] it is easy to relate PL and the expected value of C_n , $E\{C_n\}$. In steady state, we must have the expected number of calls requesting n ports in the system equal to the offered load for that . class times the probability it is not lost; so for n = 1, 2, ..., N we have

$$E\{C_n\} = \rho_n(1-PL_n).$$
 (B.15)

Before discussing how one uses these results to quickly and efficiently determine the required number of ports necessary to ensure a desired grade of service to be met, a method of computing the probability distribution of the number of conferences in the system is discussed. Let C represent the steady state number of conferences in the system; then it is easy to show that for $i \le [S/N]$

$$Pr\{C=i\} = \frac{\rho^{i}/i!}{f(1,S)};$$
 (B. 16)

but for $i \ge [S/N]+1$ the problem is much more difficult. For these cases we use another iterative scheme to generate the desired results. Define for k = 0, 1, ..., S

$$h_{k}(N,j) = \begin{cases} \rho_{N}^{j} \\ j! \end{cases} : j=0,1,\ldots,\left[\frac{k}{N}\right] \\ 0 : j=\left[\frac{k}{N}\right]+1,\ldots,k, \end{cases}$$
(B.17)

and again the backward relation for $n = N-1, N-2, \ldots, 2, 1$

$$h_{k}(n,j) = \begin{cases} \sum_{r=0}^{j} \frac{\rho_{n}^{r}}{r!} h_{k-rn}^{(n+1,j-r)} & :j=0,1,\ldots, \left[\frac{k}{n}\right] \\ 0 & :j=\left[\frac{k}{n}\right]+1,\ldots,k \end{cases}$$
(B. 18)

For i = [S/N]+1, ..., S we have

$$Pr\{C=i\} = \frac{h_S(1,i)}{f(1,S)}$$
 (B.19)

It is interesting to consider the amount of computation and storage required to compute the probability distribution of C and X. For both, one has to store two vectors; but for X the length of the vector is S+1, whereas it is (S+1)+(S+2)/2 for C using the storage mapping

$$h_{\nu}(n,j)\rightarrow H(n,\ell)$$
 (B.20)

where $\ell = k(k+1)/2 + j$. So the computational and storage requirements to produce the probability distribution of C are greater than for X.

There are several other relations between C and X which should be presented. First the expected number of conferences in the system is

$$E\{C\} = \sum_{n=1}^{N} E\{C_n\}$$

$$= \sum_{n=1}^{N} \rho_n (1-PL_n).$$
 (B.21)

Using the notion of carried load we have

$$E\{x\} = \sum_{n=1}^{N} n\rho_n (1-PL_n).$$
 (B.22)

We close this section with a discussion of the sizing routine used in this study. Supposing PL* is the desired average loss probability, we want to know what value of S will achieve this probability. For the standard Erlang Loss system, the problem is straightforward because the loss probability with S+1 ports is simply expressed as a function of the loss probability with S ports, [9]. So one can iteratively increase S until the desired grade of service is achieved. Since the loss probability is monotonically decreasing in S no other checks need be done.

In the context of the conference director port sizing, the problem is not so simple. First, as one will see in the next section, PL is not monotonically decreasing in S for a fixed load. Secondly, there is no simple way of determining PL for S+1 from PL with S ports. Our sizing method is based on the following observation from the numerical examples we have considered. If $E(\rho,S)$ is Erlang's Loss Formula, then for ρ_n (n=1, 2, ..., N) fixed

$$E(\rho,[S/\sum_{n=1}^{N} rQr]) \rightarrow PL$$
 (B.23)

as S gets large. Since PL is getting small as S is increased and the values of PL* are usually less than .1, the sizing procedure first determines the required number of ports, say S, such that

$$E(\rho, [S/\sum_{n=1}^{N} nQn]) \leq PL^*.$$
(B. 24)

Once \overline{S} has been found, the average loss probability is computed using S and ρ_n 's. If it is greater than PL*, \overline{S} is decreased until the average loss probability is greater than PL*, at which time \overline{S} is reset to its previous value. What this procedure does is allow one to determine the number of ports without having to evaluate the average loss probability for all values of S less than or equal to S.

3. NUMERICAL ANALYSIS AND SYSTEM PERFORMANCE

In this section we consider some numerical examples using the results of section 2. In general the behavior of this system is very interesting and sometimes extremely sensitive to slight changes in the parameters under consideration.

Figure B-1 shows how radical the behavior of this system can be. As a function of the number of ports, the loss probabilities PL1, PLq, and PL are shown. One sees that their behavior is cyclic and that PL, is not monotonically decreasing in S. The reason for this strange behavior is simply explained; when the number of ports is less than nine no calls requiring nine ports are accepted into the system. So as S is increased from 1 to 8 PL1 decreases monotonically from 1 at S = 0 to basically 0 at S = 8. When S = 9, those calls requiring nine ports are allowed into the system and occupy nine ports; thus for periods of time the system has no ports available for the calls requesting one port. This causes PL_1 to jump from 0 at S = 8 to around .78 at S = 9. When S is increased from 9 to 17, only one call requesting nine ports is allowed in the system at a time and PL, starts decreasing again. When S = 18, two to nine port calls could be in the system and the cyclic behavior begins all over. The overall behavior is cyclic in the number of ports; with cyclic length equal N and an overall downward drift in the values of loss probabilities.

The five cases shown in Figure B-2 represent the situation where all parameters are held constant but the variance of the offered load is monotonically increasing in Figures B-2.A to B-2.F. Usually, in queueing systems when the variance of one of the underlying random variables is increased, the measures of performance also increase. In these figures, we see the opposite happening; as the variance of the offered load is increasing the average loss probability is decreasing. The basic reason stems from the fact that as the variance of the offered load is increased the variance in the number of requests for ports is increased and the system will be better utilized because requests for a specific number of vacant ports is more likely to occur.

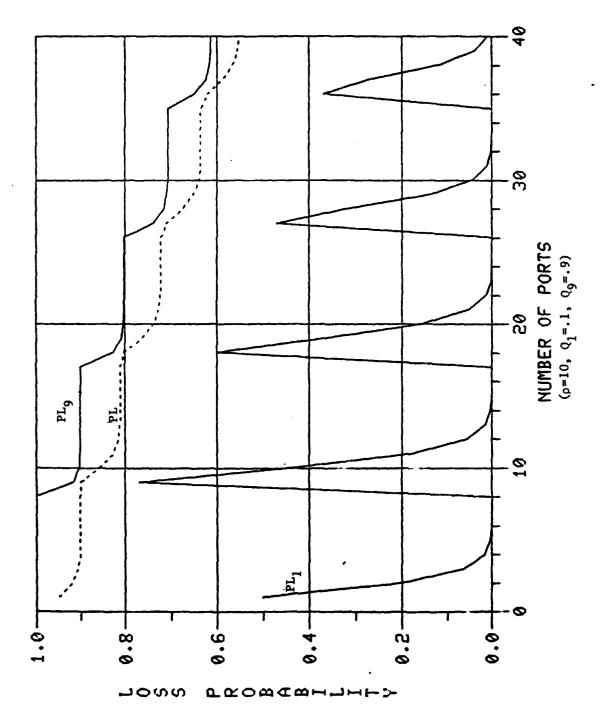


Figure B-1. Cyclic Behavior of Loss Probabilities

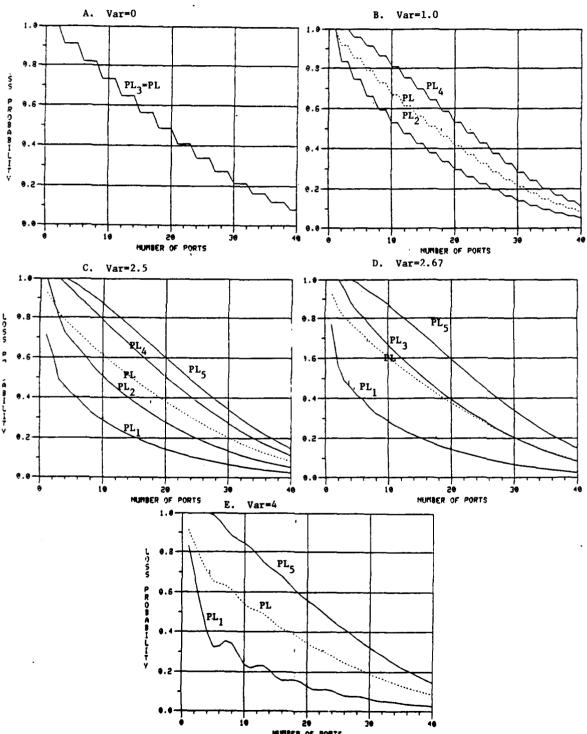


Figure B-2. Sensitivity to Variance of Offered Load ($\rho=10\,,N=5$)

In Figure B-3, the case is considered when there are no requests for one port. In that figure, one has the radical behavior of PL_n for a small value of S. This behavior is similar to the one we saw in Figure B-1 but not as pronounced, because we do not have the wide differences in the number of ports requested. Another result we wish to demonstrate via this figure is that $PL_2 = PL_3$ when S = 3, $PL_3 = PL_4$ when S = 4 and $PL_4 = PL_5$ when S = 5. The reason we have equality at these points is that we only can have one type of call in the system at a given time, not both; and since $Q_1 = 0$ a request for n ports is the same as a request for n+1 ports. Once S>N there is more interaction between the requests for ports and the strange behavior disappears.

The interaction among the number of calls requesting 1, 2, and 3 ports is shown in Figure B-4. The covariance of each pair of possible requests is plotted as a function of S. One immediately sees that there is a high negative correlation of the number of calls requesting a different number of ports. In this example there is a high correlation between calls requesting two and three ports. Basically all these curves are convex in nature. This stems from the fact that when the number of ports is small, the loss probabilities are high, and there are not many customers in the system; i.e., covariance is small. As the number of ports is increased, more and more calls from each class are accepted and the correlation becomes greater until the number of ports is large enough to ensure that the calls begin to act independently of each other. Again we see the radical performance for small S.

The final figure (Figure B-5) gives a family of curves for $Pr\{C_n = i\}$, n = 1, 2, 3 and $Pr\{C = i\}$. This figure does not show any of the radical behavior that we have seen in the previous figures. As expected, the variance in the number of calls requesting one port is greater than those requesting two; which is greater than those requesting three. Furthermore, the variance of the number of conferences present is not equal to the sum of the variance of the conference requesting a particular number of ports because of the dependencies among the underlying variables.

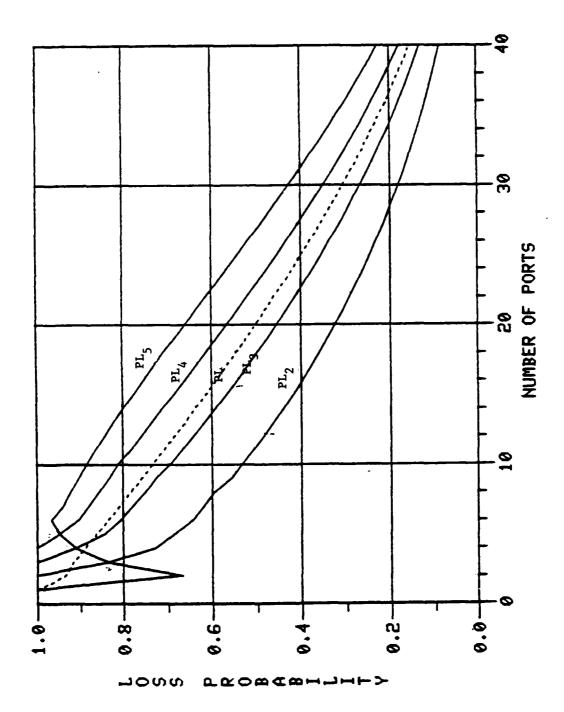
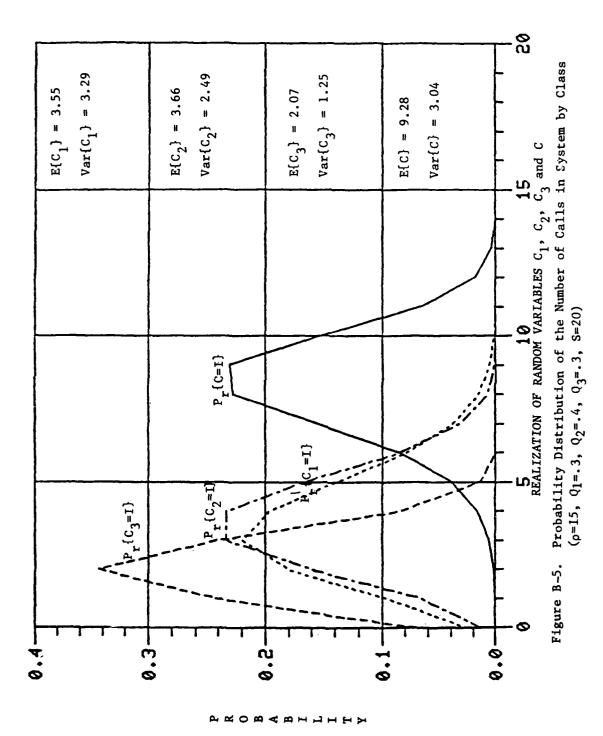



Figure B-3. Behavior of System When $Q_1=0$ $(\rho=10, Q_2=Q_5=.2,Q_3=Q_4=.3)$

B-20

REFERENCES

- [1] L. Green, "Queues Which Allow a Random Number of Servers per Customer," Ph.D. Dissertation, Yale University, 1978.
- [2] L. Green, "A Queueing System in Which Customers Require a Random Number of Servers," Operations Research, 28, 1980.
- [3] L. Green, "Comparing Operating Characteristics of Queues in Which Customers Require a Random Number of Servers," Working Paper, Graduate School of Business, Columbia University, New York.
- [4] L. Green, "A Queueing System with Auxiliary Servers." Research Working Paper # 334A, Graduate School of Business, Columbia University, New York, June, 1980.
- [5] S. Kim "M/M/S Queueing System Where Customers Demand Multiple Server Use," Ph.D. Dissertation, Southern Methodist University, 1979.
- [6] E. Arthurs and J. S. Kaufman, "Sizing a Message Store Subject to Blocking Criteria," 4th International Symposium on Modelling and Performance Evolution of Computer Systems, Feb 6-8, 1979, Vienna, Austria.
- [7] J. P. Buzen, "Computational Algorithms for Closed Queueing Networks with Experimential Servers." Communications of the ACM, Vol. 16, No. 9, 1973.
- [8] H. Kobayashi, Modeling and Analysis: An Introduction to System
 Performance Evolution Methodology, Addison Wesley, Reading, Mass.,
 1978.
- [9] R. B. Cooper, <u>Introduction to Queueing Theory</u>, Macmillan, New York, 1972.

DISTRIBUTION LIST

R100 - 2	R200 - 1
R102/R103/R103R - 1	R300 - 1
R102M - 1	R400 - 1
R102T - 9 (8 for stock)	R500 - 1
R104 - 1	R700 - 1
R110 - 1	R800 - 1
R123 - 1 (Library)	NCS-TS - 1
R124A - 1 (for Archives)	101A - 1
	312 - 1

R102T - 12

- DCA-EUR 2 (Defense Communications Agency European Area ATTN: Technical Director APO New York 09131)
- DCA-PAC 3 (Commander

 Defense Communications Agency Pacific Area
 Wheeler AFB, HI 96854)
 - 1 (Gommander DCA-Southwest Pacific Region APO San Francisco 96274)
 - 1 (Commander DCA-Northwest Pacific Region APO San Francisco 96328)
 - 1 (Chief DCA-Korea Field Office APO San Francisco 96301)
 - 1 (Chief DCA-Okinawa Field Office FPO Seattle 98773)
 - 1 (Chief DCA-Guam Field Office Box 141, NAVCAMS WESTPAC FPO San Francisco 96630)
 - 1 (U.S. Naval Short Electronic Engineering Activity Pacific Box 130, ATTN: Code 420 Pearl Harbor, HI 96860)
 - 1 (1843 EE Squadron ATTN: EIEXM Hickam AFB, HI 96853)

DISTRIBUTION (Continued)

DCA FO ITALY - 1 (DCA Field Office Italy, Box 166 AFSOUTH (NATO), FPO New York 90524)

USDCFO - 1 (Chief USDCFO/US NATO APO New York 90667)

DATE FILME